ﻻ يوجد ملخص باللغة العربية
The triplet-like QED processes $gamma + ell_i to ell^+_j ell^-_j + ell_i$ with $i eq j,$ and $i=e, mu,$ $j=e, mu,tau$ has been investigated as the reactions where a dark photon, $A$, is produced as a virtual state with subsequent decay into a $ell^+_j ell^-_j-$-pair. This effect arises due to the so-called kinetic mixing and is characterized by the small parameter $epsilon$ describing the coupling strength relative to the electric charge $e$. The main advantage of searching $A$ in these processes is that the background to the $A$ signal is pure QED. Concerning $A$, we consider its contribution in the Compton-type diagrams only since, in this case, the virtual dark photon has time-like nature and its propagator has the Breit-Wigner form. So, near the resonance, $A$ can manifest itself. The contribution of $A$ in the Borsellino diagrams is negligible since, in this case, the virtual dark photon is space-like, the $A$ propagator does not peak and the effect is proportional, at least, to $epsilon^2$. We calculate the distributions over the invariant mass of the produced $ell^+_j ell^-_j-$ pair and search for the kinematical region where the Compton-type diagrams contribution is not suppressed with respect to the Borsellino ones. The value of the parameter $epsilon$ is estimated as a function of the dark photon mass for a given number of events.
We compute the non-perturbative contribution of semileptonic tensor operators $(bar q sigma^{mu u} q)(bar ell sigma_{mu u} ell)$ to the purely leptonic process $mu to e gamma$ and to the electric and magnetic dipole moments of charged leptons by ma
In this present paper, we investigate the muon pairs production in the interaction between two quasireal photons in $e^+e^-$ collision. The total and differential cross section of the process $gamma gamma to mu^+mu^-$ at a beam energy of photons from
In the framework of the seesaw models with triplets of fermions, we evaluate the decay rates of $mu to e gamma$ and $tau to l gamma$ transitions. We show that although, due to neutrino mass constraints, those rates are in general expected to be well
We consider the case that $mu$-$e$ conversion signal is discovered but other charged lepton flavor violating (cLFV) processes will never be found. In such a case, we need other approaches to confirm the $mu$-$e$ conversion and its underlying physics
The products of the electron width of the J/psi meson and the branching fraction of its decays to the lepton pairs were measured using data from the KEDR experiment at the VEPP-4M electron-positron collider. The results are Gamma_{ee}(J/psi)*Br(J/p