ترغب بنشر مسار تعليمي؟ اضغط هنا

Conspiracy of BSM physics and cosmology

100   0   0.0 ( 0 )
 نشر من قبل Maxim Khlopov
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Maxim Yu. Khlopov




اسأل ChatGPT حول البحث

The lack of experimental evidence at the LHC for physics beyond the Standard model (BSM) of elementary particles together with necessity of its existence to provide solutions of internal problems of the Standard model (SM) as well as of physical nature of the basic elements of the modern cosmology demonstrates the conspiracy of BSM physics. Simultaneously the data of precision cosmology only tighten the constraints on the deviations from the now standard LambdaCDM model and thus exhibit conspiracy of the nonstandard cosmological scenarios. We show that studying new physics in combination of its physical, astrophysical and cosmological probes, can not only unveil the conspiracy of BSM physics but will also inevitably reveal nonstandard features in the cosmological scenario.



قيم البحث

اقرأ أيضاً

156 - P. Pralavorio 2013
Today, both particle physics and cosmology are described by few parameter Standard Models, i.e. it is possible to deduce consequence of particle physics in cosmology and vice verse. The former is examined in this lecture, in light of the recent syste matic exploration of the electroweak scale by the LHC experiments. The two main results of the first phase of the LHC, the discovery of a Higgs-like particle and the absence so far of new particles predicted by natural theories beyond the Standard Model (supersymmetry, extra-dimension and composite Higgs) are put in a historical context to enlighten their importance and then presented extensively. To be complete, a short review from the neutrino physics, which can not be probed at LHC, is also given. The ability of all these results to resolve the 3 fundamental questions of cosmology about the nature of dark energy and dark matter as well as the origin of matter-antimatter asymmetry is discussed in each case.
86 - Maxim Yu. Khlopov 2020
The observational evidence for the inflationary cosmology with baryosynthesis and dark matter/energy can be viewed as the messenger for new physics, which governed the Universe origin, evolution and structure. To specify the physics beyond the Standa rd model (BSM), underlying the modern cosmological paradigm additional model dependent messengers are proposed, involving multi-component and composite dark matter, meta-stable particles, primordial black holes and antimatter domains in baryon asymmetrical Universe.
Experiments with cold and ultracold neutrons have reached a level of precision such that problems far beyond the scale of the present Standard Model of particle physics become accessible to experimental investigation. Due to the close links between p article physics and cosmology, these studies also permit a deep look into the very first instances of our universe. First addressed in this article, both in theory and experiment, is the problem of baryogenesis ... The question how baryogenesis could have happened is open to experimental tests, and it turns out that this problem can be curbed by the very stringent limits on an electric dipole moment of the neutron, a quantity that also has deep implications for particle physics. Then we discuss the recent spectacular observation of neutron quantization in the earths gravitational field and of resonance transitions between such gravitational energy states. These measurements, together with new evaluations of neutron scattering data, set new constraints on deviations from Newtons gravitational law at the picometer scale. Such deviations are predicted in modern theories with extra-dimensions that propose unification of the Planck scale with the scale of the Standard Model ... Another main topic is the weak-interaction parameters in various fields of physics and astrophysics that must all be derived from measured neutron decay data. Up to now, about 10 different neutron decay observables have been measured, much more than needed in the electroweak Standard Model. This allows various precise tests for new physics beyond the Standard Model, competing with or surpassing similar tests at high-energy. The review ends with a discussion of neutron and nuclear data required in the synthesis of the elements during the first three minutes and later on in stellar nucleosynthesis.
In this paper we analyze the spectrum of the primordial gravitational waves (GWs) predicted in the Standard Model*Axion*Seesaw*Higgs portal inflation (SMASH) model, which was proposed as a minimal extension of the Standard Model that addresses five f undamental problems of particle physics and cosmology (inflation, baryon asymmetry, neutrino masses, strong CP problem, and dark matter) in one stroke. The SMASH model has a unique prediction for the critical temperature of the second order Peccei-Quinn (PQ) phase transition $T_c sim 10^8,mathrm{GeV}$ up to the uncertainty in the calculation of the axion dark matter abundance, implying that there is a drastic change in the equation of state of the universe at that temperature. Such an event is imprinted on the spectrum of GWs originating from the primordial tensor fluctuations during inflation and entering the horizon at $T sim T_c$, which corresponds to $f sim 1,mathrm{Hz}$, pointing to a best frequency range covered by future space-borne GW interferometers. We give a precise estimation of the effective relativistic degrees of freedom across the PQ phase transition and use it to evaluate the spectrum of GWs observed today. It is shown that the future high sensitivity GW experiment -- ultimate DECIGO -- can probe the nontrivial feature resulting from the PQ phase transition in this model.
72 - D. Marzocca , J. Criado 2020
Effective Field Theories (EFTs) capture effects from heavy dynamics at low energy and represent an essential ingredient in the context of Standard Model (SM) precision tests. This document gathers a number of relevant scenarios for heavy physics beyo nd the SM and presents explicit expressions for the Wilson coefficients in their low-energy EFT. It includes i) weakly coupled scenarios in which one or a few particles of different spins and quantum numbers interact linearly with the SM and generate EFT effects at tree-level, ii) scenarios where heavy particles interact quadratically whereupon the resulting EFT arises only at loop-level and iii) strongly coupled scenarios where the size of Wilson coefficients is controlled by symmetry arguments. This review aims at motivating experimental EFT studies in which only a subset of all possible EFT interactions is used, as well as facilitating the theoretical interpretation of EFT fits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا