ﻻ يوجد ملخص باللغة العربية
We study the stellar populations of the brightest group galaxies (BGGs) in groups with different dynamical states, using GAMA survey data. We use two independent, luminosity dependent indicators to probe the relaxedness of their groups; the magnitude gap between the two most luminous galaxies ($Delta M_{12}$), and offset between BGG and the luminosity center ($D_{offset}$) of the group. Combined, these two indicators were previously found useful for identifying relaxed and unrelaxed groups. We find that the BGGs of unrelaxed groups have significantly bluer NUV-r colours than in relaxed groups. This is also true at the fixed sersic index. We find the bluer colours cannot be explained away by differing dust fraction, suggesting there are real differences in their stellar populations. SFRs derived from SED-fitting tend to be higher in unrelaxed systems. This is in part because of a greater fraction of BGGs with non-elliptical morphology, but also because unrelaxed systems have larger numbers of mergers, some of which may bring fuel for star formation. The SED-fitted stellar metallicities of BGGs in unrelaxed systems also tend to be higher by around 0.05 dex, perhaps because their building blocks were more massive. We find that the $Delta M_{12}$ parameter is the most important parameter behind the observed differences in the relaxed/unrelaxed groups, in contrast with the previous study of Trevisan et al. (2017). We also find that groups selected to be unrelaxed using our criteria tend to have higher velocity offsets between the BGG and their group.
We present detailed, high spatial and spectral resolution, long-slit observations of four central cluster galaxies (Abell 0085, 0133, 0644 and Ophiuchus) recently obtained on the Southern African Large Telescope (SALT). Our sample consists of central
We use the SPARC (Spitzer Photometry & Accurate Rotation Curves) database to study the relation between the central surface density of stars Sstar and dynamical mass Sdyn in 135 disk galaxies (S0 to dIrr). We find that Sdyn correlates tightly with Ss
The dynamical mass (M_dyn) is a key property of any galaxy, yet a determination of M_dyn is not straight-forward if spatially resolved measurements are not available. This situation occurs in single-dish HI observations of the local universe, but als
We continue the analysis of the dataset of our spectroscopic observation campaign of M31, by deriving simple stellar population properties (age metallicity and alpha-elements overabundance) from the measurement of Lick/IDS absorption line indices. We
We present a Bayesian method to identify multiple (chemodynamic) stellar populations in dwarf spheroidal galaxies (dSphs) using velocity, metallicity, and positional stellar data without the assumption of spherical symmetry. We apply this method to a