ترغب بنشر مسار تعليمي؟ اضغط هنا

TensorTrace: an application to contract tensor networks

73   0   0.0 ( 0 )
 نشر من قبل Glen Evenbly
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Glen Evenbly




اسأل ChatGPT حول البحث

Tensor network methods are a conceptually elegant framework for encoding complicated datasets, where high-order tensors are approximated as networks of low-order tensors. In practice, however, the numeric implementation of tensor network algorithms is often a labor-intensive and error-prone task, even for experienced researchers in this area. emph{TensorTrace} is application designed to alleviate the burden of contracting tensor networks: it provides a graphic drawing interface specifically tailored for the construction of tensor network diagrams, from which the code for their optimal contraction can then be automatically generated (in the users choice of the MATLAB, Python or Julia languages). emph{TensorTrace} is freely available at url{https://www.tensortrace.com} wi



قيم البحث

اقرأ أيضاً

As quantum technologies develop, we acquire control of an ever-growing number of quantum systems. Unfortunately, current tools to detect relevant quantum properties of quantum states, such as entanglement and Bell nonlocality, suffer from severe scal ability issues and can only be computed for systems of a very modest size, of around $6$ sites. In order to address large many-body systems, we propose a renormalisation-type approach based on a class of local linear transformations, called connectors, which can be used to coarse-grain the system in a way that preserves the property under investigation. Repeated coarse-graining produces a system of manageable size, whose properties can then be explored by means of usual techniques for small systems. In case of a successful detection of the desired property, the method outputs a linear witness which admits an exact tensor network representation, composed of connectors. We demonstrate the power of our method by certifying using a normal desktop computer entanglement, Bell nonlocality and supra-quantum Bell nonlocality in systems with hundreds of sites.
Cluster expansions for the exponential of local operators are constructed using tensor networks. In contrast to other approaches, the cluster expansion does not break any spatial or internal symmetries and exhibits a very favourable prefactor to the error scaling versus bond dimension. This is illustrated by time evolving a matrix product state using very large time steps, and by constructing a novel robust algorithm for finding ground states of 2-dimensional Hamiltonians using projected entangled pair states as fixed points of 2-dimensional transfer matrices.
We investigate the potential of tensor network based machine learning methods to scale to large image and text data sets. For that, we study how the mutual information between a subregion and its complement scales with the subsystem size $L$, similar ly to how it is done in quantum many-body physics. We find that for text, the mutual information scales as a power law $L^ u$ with a close to volume law exponent, indicating that text cannot be efficiently described by 1D tensor networks. For images, the scaling is close to an area law, hinting at 2D tensor networks such as PEPS could have an adequate expressibility. For the numerical analysis, we introduce a mutual information estimator based on autoregressive networks, and we also use convolutional neural networks in a neural estimator method.
We characterize the variational power of quantum circuit tensor networks in the representation of physical many-body ground-states. Such tensor networks are formed by replacing the dense block unitaries and isometries in standard tensor networks by l ocal quantum circuits. We explore both quantum circuit matrix product states and the quantum circuit multi-scale entanglement renormalization ansatz, and introduce an adaptive method to optimize the resulting circuits to high fidelity with more than $10^4$ parameters. We benchmark their expressiveness against standard tensor networks, as well as other common circuit architectures, for both the energy and correlation functions of the 1D Heisenberg and Fermi-Hubbard models in the gapless regime. We find quantum circuit tensor networks to be substantially more expressive than other quantum circuits for these problems, and that they can even be more compact than standard tensor networks. Extrapolating to circuit depths which can no longer be emulated classically, this suggests a region of quantum advantage with respect to expressiveness in the representation of physical ground-states.
We study the realization of anyon-permuting symmetries of topological phases on the lattice using tensor networks. Working on the virtual level of a projected entangled pair state, we find matrix product operators (MPOs) that realize all unitary topo logical symmetries for the toric and color codes. These operators act as domain walls that enact the symmetry transformation on anyons as they cross. By considering open boundary conditions for these domain wall MPOs, we show how to introduce symmetry twists and defect lines into the state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا