ﻻ يوجد ملخص باللغة العربية
We determine the scaling properties of geometric operators such as lengths, areas, and volumes in models of higher derivative quantum gravity by renormalizing appropriate composite operators. We use these results to deduce the fractal dimensions of such hypersurfaces embedded in a quantum spacetime at very small distances.
We hereby derive the Newtonian metric potentials for the fourth-derivative gravity including the one-loop logarithm quantum corrections. It is explicitly shown that the behavior of the modified Newtonian potential near the origin is improved respect
We present, in an explicit form, the metric for all spherically symmetric Schwarzschild-Bach black holes in Einstein-Weyl theory. In addition to the black hole mass, this complete family of spacetimes involves a parameter that encodes the value of th
In literature there is a model of modified gravity in which the matter Lagrangian is coupled to the geometry via trace of the stress-energy momentum tensor $T=T_{mu}^{mu}$. This type of modified gravity is called as $f(R,T)$ in which $R$ is Ricci sca
Fourth-derivative gravity has two free parameters, $alpha$ and $beta$, which couple the curvature-squared terms $R^2$ and $R_{mu u}^2$. Relativistic effects and short-range laboratory experiments can be used to provide upper limits to these constants
We study (covariant) scalar-vector-tensor (SVT) perturbations of infinite derivative gravity (IDG), at the quadratic level of the action, around conformally-flat, covariantly constant curvature backgrounds which are not maximally symmetric spacetimes