ﻻ يوجد ملخص باللغة العربية
Within mean-field theory we study wetting of elastic substrates. Our analysis is based on a grand canonical free energy functional of the fluid number density and of the substrate displacement field. The substrate is described in terms of the linear theory of elasticity, parametrized by two Lame coefficients. The fluid contribution is of the van der Waals type. Two potentials characterize the interparticle interactions in the system. The long-ranged attraction between the fluid particles is described by a potential $w(r)$, and $v(r)$ characterizes the substrate-fluid interaction. By integrating out the elastic degrees of freedom we obtain an effective theory for the fluid number density alone. Its structure is similar to the one for wetting of an inert substrate. However, the potential $w(r)$ is replaced by an effective potential which, in addition to $w(r)$, contains a term bilinear in $v(r)$. We discuss the corresponding wetting transitions in terms of an effective interface potential $omega(ell)$, where $ell$ denotes the thickness of the wetting layer. We show that in the case of algebraically decaying interactions the elasticity of the substrate may suppress critical wetting transitions, and may even turn them first order.
We report on the effect of intermolecular forces on the fluctuations of supported liquid films. Using an optically-induced thermal gradient, we form nanometer-thin films of wetting liquids on glass substrates, where van der Waals forces are balanced
A mean-field theory is presented which describes the basic observations of recent experiments revealing rich wetting behaviour of n-alkane/methanol mixtures at the liquid-vapour interface. The theory, qualitative and in part heuristic, is based on a
The understanding of sliding friction for wet, patterned surfaces from first principles is challenging. While emerging applications have sought design principles from biology, a general framework is lacking because soft interfaces experience a multip
We introduce an accurate and efficient method for characterizing surface wetting and interfacial properties, such as the contact angle made by a liquid droplet on a solid surface, and the vapor-liquid surface tension of a fluid. The method makes use
A thin liquid film with non-zero curvature at its free surface spontaneously flows to reach a flat configuration, a process driven by Laplace pressure gradients and resisted by the liquids viscosity. Inspired by recent progresses on the dynamics of l