ﻻ يوجد ملخص باللغة العربية
We present a detailed study of electrical and optical generated free carrier on the spectral characteristics of a silicon microring modulator. The spectral distortion generated due to thermal and free carriers is presented, and the mechanism for mitigation is also presented. We observed that two-photon induced nonlinearity could be addressed by operating the modulator at suitable bias points. Furthermore, by applying small-signal drive the spectral distortion can be restored. We also present the effect of optical power and drive signal limit on the spectral characteristics. The study allows one to identify suitable device performance and operating conditions to utilize silicon ring modulator for optical signal processing.
Topological photonics has emerged as a novel paradigm for the design of electromagnetic systems from microwaves to nanophotonics. Studies to date have largely focused on the demonstration of fundamental concepts, such as non-reciprocity and waveguidi
We report intracavity Bragg scattering induced by photorefractive (PR) effect in high-Q lithium niobate (LN) ring resonators at cryogenic temperatures. We show that, when a cavity mode is strongly excited, the PR effect imprints a long-lived periodic
We study nanomechanical resonators with frequency fluctuations due to diffusion of absorbed particles. The diffusion depends on the vibration amplitude through inertial effect. We find that, if the diffusion coefficient is sufficiently large, the res
To enhance transmission efficiency of Pancharatnam-Berry (PB) phase metasurfaces, multilayer split-ring resonators were proposed to develop encoding sequences. As per the generalized Snell law, the deflection angle of the PB phase encoding metasurfac
Wavelength-sized microdisk resonators were fabricated on a single crystalline 4H-silicon-carbide-oninsulator platform (4H-SiCOI). By carrying out microphotoluminescence measurements at room temperature, we show that the microdisk resonators support w