ترغب بنشر مسار تعليمي؟ اضغط هنا

Mitigation of carrier induced optical bistability in silicon ring resonators

61   0   0.0 ( 0 )
 نشر من قبل Shankar Kumar Selvaraja
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a detailed study of electrical and optical generated free carrier on the spectral characteristics of a silicon microring modulator. The spectral distortion generated due to thermal and free carriers is presented, and the mechanism for mitigation is also presented. We observed that two-photon induced nonlinearity could be addressed by operating the modulator at suitable bias points. Furthermore, by applying small-signal drive the spectral distortion can be restored. We also present the effect of optical power and drive signal limit on the spectral characteristics. The study allows one to identify suitable device performance and operating conditions to utilize silicon ring modulator for optical signal processing.



قيم البحث

اقرأ أيضاً

368 - Daniel Leykam , Luqi Yuan 2020
Topological photonics has emerged as a novel paradigm for the design of electromagnetic systems from microwaves to nanophotonics. Studies to date have largely focused on the demonstration of fundamental concepts, such as non-reciprocity and waveguidi ng protected against fabrication disorder. Moving forward, there is a pressing need to identify applications where topological designs can lead to useful improvements in device performance. Here we review applications of topological photonics to ring resonator-based systems, including one- and two-dimensional resonator arrays, and dynamically-modulated resonators. We evaluate potential applications such as quantum light generation, disorder-robust delay lines, and optical isolation, as well as future research directions and open problems that need to be addressed.
We report intracavity Bragg scattering induced by photorefractive (PR) effect in high-Q lithium niobate (LN) ring resonators at cryogenic temperatures. We show that, when a cavity mode is strongly excited, the PR effect imprints a long-lived periodic space-charge field. This residual field in turn creates a refractive index modulation pattern that dramatically enhances the back scattering of an incoming probe light, and results in selective and reconfigurable mode splittings. This PR-induced Bragg scattering effect, despite being undesired for many applications, could be utilized to enable optically programmable photonic components.
We study nanomechanical resonators with frequency fluctuations due to diffusion of absorbed particles. The diffusion depends on the vibration amplitude through inertial effect. We find that, if the diffusion coefficient is sufficiently large, the res onator response to periodic driving displays bistability. The lifetime of the coexisting vibrational states scales exponentially with the diffusion coefficient. It also displays a characteristic scaling dependence on the distance to bifurcation points.
To enhance transmission efficiency of Pancharatnam-Berry (PB) phase metasurfaces, multilayer split-ring resonators were proposed to develop encoding sequences. As per the generalized Snell law, the deflection angle of the PB phase encoding metasurfac es depends on the metasurface period size. Therefore, it is impossible to design an infinitesimal metasurface unit.Consequently, the continuous transmission scattering angle cannot be obtained. In digital signal processing, this study introduces the Fourier convolution principle on encoding metasurface sequences to freely control the transmitted scattering angles. Both addition and subtraction operations between two different encoding sequences were then performed to achieve the continuous variation of the scattering angle. Furthermore, we established that the Fourier convolution principle can be applied to the checkerboard coded metasurfaces.
Wavelength-sized microdisk resonators were fabricated on a single crystalline 4H-silicon-carbide-oninsulator platform (4H-SiCOI). By carrying out microphotoluminescence measurements at room temperature, we show that the microdisk resonators support w hispering-gallery modes (WGMs) with quality factors up to $5.25 times 10^3$ and mode volumes down to $2.69 times(lambda /n)^3$ at the visible and near-infrared wavelengths. Moreover, the demonstrated wavelength-sized microdisk resonators exhibit WGMs whose resonant wavelengths compatible with the zero-phonon lines of spin defects in 4H-SiCOI, making them a promising candidate for applications in cavity quantum electrodynamics and integrated quantum photonic circuits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا