ﻻ يوجد ملخص باللغة العربية
The binary system $eta$ Carinae is a unique laboratory in which to study particle acceleration to high energies under a wide range of conditions, including extremely high densities around periastron. To date, no consensus has emerged as to the origin of the GeV $gamma$-ray emission in this important system. With a re-analysis of the full Fermi-LAT dataset for $eta$ Carinae we show that the spectrum is consistent with a pion decay origin. A single population leptonic model connecting the X-ray to $gamma$-ray emission can be ruled out. Here, we revisit the physical model of Ohm et al. (2015), based on two acceleration zones associated to the termination shocks in the winds of both stars. We conclude that inverse-Compton emission from in-situ accelerated electrons dominates the hard X-ray emission detected with NuSTAR at all phases away from periastron, and pion-decay from shock accelerated protons is the source of the $gamma$-ray emission. Very close to periastron there is a pronounced dip in the hard X-ray emission, concomitant with the repeated disappearance of the thermal X-ray emission, which we interpret as being due to the suppression of significant electron acceleration in the system. Within our model, the residual emission seen by NuSTAR at this phase can be accounted for with secondary electrons produced in interactions of accelerated protons, in agreement with the variation in pion-decay $gamma$-ray emission. Future observations with H.E.S.S., CTA and NuSTAR should confirm or refute this scenario.
Observations of high energy gamma rays recently revealed a persistent source in spatial coincidence with the binary system Eta Carinae. Since modulation of the observed gamma-ray flux on orbital time scales has not been reported so far, an unambiguou
The massive binary system Eta Carinae is characterized by intense colliding winds that form shocks and emit X-rays. The system is highly eccentric ($esimeq0.9$), resulting in modulated X-ray emission during its 5.54 year orbit. The X-ray flux increas
We present the results of extensive observations by the gamma-ray AGILE satellite of the Galactic region hosting the Carina nebula and the remarkable colliding wind binary Eta Carinae (Eta Car) during the period 2007 July to 2009 January. We detect a
We review extragalactic $gamma$-ray propagation models with emphasis on the electromagnetic (EM) cascade process in the magnetized expanding Universe. We consider cascades initiated by primary protons of ultra-high energy accelerated by blazars and s
We report on a detailed spectral characterization of the non-thermal X-ray emission for a large sample of gamma-ray pulsars in the second Fermi-LAT catalogue. We outline the criteria adopted for the selection of our sample, its completeness, and crit