ترغب بنشر مسار تعليمي؟ اضغط هنا

Investigating a unique partial eclipse in the High Mass X-ray Binary IGR J16393-4643 with Swift-XRT

113   0   0.0 ( 0 )
 نشر من قبل Sanhita Kabiraj
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The orbital profile of the High Mass X-ray binary IGR J16393-4643 shows a dip in its X-ray intensity, which was previously interpreted as an eclipse. Unlike most eclipsing HMXBs, where the X-ray eclipses are about two orders of magnitude fainter compared to the out of eclipse emission, this particular eclipse like feature is narrow and partial, casting doubt if it is indeed an eclipse. To further investigate the nature of this low intensity orbital phase, we use a large number of observations with Swift-XRT, covering the entire orbital phase. The soft X-ray observations also show this low intensity phase, which is about 30% of the intensity during rest of the orbit. We also carried out orbital phase resolved spectroscopy to compare the change in the spectral parameters inside and outside of this low intensity state. The results indicate that this low intensity state might not be an eclipse, as previously thought but absorption in the stellar corona. We have also provided the inclination angle of the binary for grazing eclipse caused by the stellar corona.

قيم البحث

اقرأ أيضاً

Hard X-ray observations with the Neil Gehrels Swift Observatory Burst Alert Telescope (BAT) reveal superorbital modulation in the wind-accreting supergiant high-mass X-ray binary (HMXB) 4U 1538-52 at a period of 14.9130 +/- 0.0026 days that is consis tent with four times the 3.73 day orbital period. These periods agree with a previously suggested correlation between superorbital and orbital periods in similar HMXBs. During the ~14 years of observations the superorbital modulation changes amplitude, and since ~MJD 57,650 it was no longer detected in the power spectrum, although a peak near the second harmonic of this was present for some time. Measurements of the spin period of the neutron star in the system with the Fermi Gamma-ray Burst Monitor show a long-term spin-down trend which halted towards the end of the light curve, suggesting a connection between dP(spin)/dt and superorbital modulation, as proposed for 2S 0114+650. However, an earlier torque reversal from INTEGRAL observations was not associated with superorbital modulation changes. B and V band photometry from the Las Cumbres Observatory reveals orbital ellipsoidal photometric variability, but no superorbital optical modulation. However the photometry was obtained when the 14.9130 day period was no longer detected in the BAT power spectrum. We revisit possible superorbital modulation in BAT observations of IGR J16393-4643 but cannot conclusively determine whether this is present, although is not persistent. We consider superorbital modulation mechanisms, and suggest that the Corotating Interaction Region model, with small deviations from orbital synchronization, appears promising.
We report the results from pulsations and spectral analysis of a large number of observations of the HMXB pulsar IGR J18027--2016 with {it Swift}--XRT, carried out at different orbital phases. In some orbital phases, as seen in different XRT observat ions, the X-ray intensity is found to vary by a large factor, of about $sim$50. In all the observations with sufficient number of source X-ray photons, pulsations have been detected around the previously known pulse period of $sim$140 sec, When detected, the pulse profiles do not show any significant variation over a flux difference of a factor of $sim$3. The absorption column density is found to be large before and after the eclipse. We discuss various possible reasons for intensity and spectral variations in IGR J18027--2016, such as clumpy wind and hydrodynamic instabilities.
147 - Arash Bodaghee 2016
The high-mass X-ray binary and accreting X-ray pulsar IGR J16393-4643 was observed by NuSTAR in the 3-79 keV energy band for a net exposure time of 50 ks. We present the results of this observation which enabled the discovery of a cyclotron resonant scattering feature with a centroid energy of 29.3(+1.1/-1.3) keV. This allowed us to measure the magnetic field strength of the neutron star for the first time: B = (2.5+/-0.1)e12 G. The known pulsation period is now observed at 904.0+/-0.1 s. Since 2006, the neutron star has undergone a long-term spin-up trend at a rate of P = -2e-8 s/s (-0.6 s per year, or a frequency derivative of nu = 3e-14 Hz/s ). In the power density spectrum, a break appears at the pulse frequency which separates the zero slope at low frequency from the steeper slope at high frequency. This addition of angular momentum to the neutron star could be due to the accretion of a quasi-spherical wind, or it could be caused by the transient appearance of a prograde accretion disk that is nearly in corotation with the neutron star whose magnetospheric radius is around 2e8 cm.
An analysis of the high-energy emission from IGR J16393-4643 (=AX J1639.0-4642) is presented using data from INTEGRAL and XMM-Newton. The source is persistent in the 20-40 keV band at an average flux of 5.1x10^-11 ergs/cm2/s, with variations in inten sity by at least an order of magnitude. A pulse period of 912.0+/-0.1 s was discovered in the ISGRI and EPIC light curves. The source spectrum is a strongly-absorbed (nH=(2.5+/-0.2)x10^23 atoms/cm2) power law that features a high-energy cutoff above 10 keV. Two iron emission lines at 6.4 and 7.1 keV, an iron absorption edge >7.1 keV, and a soft excess emission of 7x10^-15 ergs/cm2/s between 0.5-2 keV, are detected in the EPIC spectrum. The shape of the spectrum does not change with the pulse. Its persistence, pulsation, and spectrum place IGR J16393-4643 among the class of heavily-absorbed HMXBs. The improved position from EPIC is R.A. (J2000)=16:39:05.4 and Dec.=-46:42:12 (4 uncertainty) which is compatible with that of 2MASS J16390535-4642137.
90 - T.W.J. Thompson 2006
With recent and archival Rossi X-Ray Timing Explorer (RXTE) X-ray measurements of the heavily obscured X-ray pulsar IGR J16393-4643, we carried out a pulse timing analysis to determine the orbital parameters. Assuming a circular orbit, we phase-conne cted data spanning over 1.5 years. The most likely orbital solution has a projected semi-major axis of 43 +- 2 lt-s and an orbital period of 3.6875 +- 0.0006 days. This implies a mass function of 6.5 +- 1.1 M_sun and confirms that this INTEGRAL source is a High Mass X-ray Binary (HMXB) system. By including eccentricity in the orbital model, we find e < 0.25 at the 2 sigma level. The 3.7 day orbital period and the previously known ~910 s pulse period place the system in the region of the Corbet diagram populated by supergiant wind accretors, and the low eccentricity is also consistent with this type of system. Finally, it should be noted that although the 3.7 day solution is the most likely one, we cannot completely rule out two other solutions with orbital periods of 50.2 and 8.1 days.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا