ﻻ يوجد ملخص باللغة العربية
We generalize the construction of M. Lieblich for the compactification of the moduli stack of $PGL_r$-bundles on algebraic spaces to the moduli stack of Tanaka-Thomas $PGL_r$-Higgs bundles on algebraic schemes. The method we use is the moduli stack of Higgs version of Azumaya algebras. In the case of smooth surfaces, we obtain a virtual fundamental class on the moduli stack of $PGL_r$-Higgs bundles. An application to the Vafa-Witten invariants is discussed.
In this paper we count the number of isomorphism classes of geometrically indecomposable quasi-parabolic structures of a given type on a given vector bundle on the projective line over a finite field. We give a conjectural cohomological interpretatio
The moduli space of Higgs bundles has two stratifications. The Bialynicki-Birula stratification comes from the action of the non-zero complex numbers by multiplication on the Higgs field, and the Shatz stratification arises from the Harder-Narasimhan
Let $X$ be a smooth projective curve over the complex numbers. To every representation $rhocolon GL(r)lra GL(V)$ of the complex general linear group on the finite dimensional complex vector space $V$ which satisfies the assumption that there be an in
We present a new family of monads whose cohomology is a stable rank two vector bundle on $mathbb{P}^3$. We also study the irreducibility and smoothness together with a geometrical description of some of these families. These facts are used to constru
We take another approach to Hitchins strategy of computing the cohomology of moduli spaces of Higgs bundles by localization with respect to the circle-action. Our computation is done in the dimensional completion of the Grothendieck ring of varieties