ﻻ يوجد ملخص باللغة العربية
Within the solar system, approximate realizations of the three-body problem occur when a comet approaches a planet while being affected mainly by such a planet and the Sun, and this configuration was investigated by Tisserand within the framework of Newtonian gravity. The exact relativistic treatment of the problem is not an easy task, but the present paper develops an approximate calculational scheme which computes for the first time the tiny effective-gravity correction to the equation of the surface for all points of which it is equally advantageous to regard the heliocentric motion as being perturbed by the attraction of Jupiter, or the jovicentric motion as being perturbed by the attraction of the Sun. This analysis completes the previous theoretical investigations of effective-gravity corrections to the Newtonian analysis of three-body systems, and represents an intermediate step towards relativistic effects on cometary motions.
We revisit several aspects of the interaction of self-gravitating, slowly varying sources with their own emitted radiation within the context of post-Newtonian approximation to General Relativity. We discuss and clarify the choice of boundary conditi
In this note, I describe an attempt to construct a phenomenological gravitational model at the boundary of the AdS manifold from the variation of boundary terms in the gravitational action. I find that for an AdS vacuum in the bulk, geometric constra
The Hamilton-Jacobi analysis of three dimensional gravity defined in terms of Ashtekar-like variables is performed. We report a detailed analysis where the complete set of Hamilton-Jacobi constraints, the characteristic equations and the gauge transf
Advanced methods for computing perturbative, quantum-gravitational scattering amplitudes show great promise for improving our knowledge of classical gravitational dynamics. This is especially true in the weak-field and arbitrary-speed (post-Minkowski
It is argued that the so-called holographic principle will obstruct attempts to produce physically realistic models for the unification of general relativity with quantum mechanics, unless determinism in the latter is restored. The notion of time in