ترغب بنشر مسار تعليمي؟ اضغط هنا

A Need for Dedicated Outreach Expertise and Online Programming: Astro2020 Science White Paper

87   0   0.0 ( 0 )
 نشر من قبل Amanda Bauer
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Maximizing the public impact of astronomy projects in the next decade requires NSF-funded centers to support the development of online, mobile-friendly outreach and education activities. EPO teams with astronomy, education, and web development expertise should be in place to build accessible programs at scale and support astronomers doing outreach.



قيم البحث

اقرأ أيضاً

84 - Alexander P. Ji 2019
Nearby dwarf galaxies are local analogues of high-redshift and metal-poor stellar populations. Most of these systems ceased star formation long ago, but they retain signatures of their past that can be unraveled by detailed study of their resolved st ars. Archaeological examination of dwarf galaxies with resolved stellar spectroscopy provides key insights into the first stars and galaxies, galaxy formation in the smallest dark matter halos, stellar populations in the metal-free and metal-poor universe, the nature of the first stellar explosions, and the origin of the elements. Extremely large telescopes with multi-object R=5,000-30,000 spectroscopy are needed to enable such studies for galaxies of different luminosities throughout the Local Group.
77 - Knut A.G. Olsen 2019
Over the past decade, research in resolved stellar populations has made great strides in exploring the nature of dark matter, in unraveling the star formation, chemical enrichment, and dynamical histories of the Milky Way and nearby galaxies, and in probing fundamental physics from general relativity to the structure of stars. Large surveys have been particularly important to the biggest of these discoveries. In the coming decade, current and planned surveys will push these research areas still further through a large variety of discovery spaces, giving us unprecedented views into the low surface brightness Universe, the high surface brightness Universe, the 3D motions of stars, the time domain, and the chemical abundances of stellar populations. These discovery spaces will be opened by a diverse range of facilities, including the continuing Gaia mission, imaging machines like LSST and WFIRST, massively multiplexed spectroscopic platforms like DESI, Subaru-PFS, and MSE, and telescopes with high sensitivity and spatial resolution like JWST, the ELTs, and LUVOIR. We do not know which of these facilities will prove most critical for resolved stellar populations research in the next decade. We can predict, however, that their chance of success will be maximized by granting use of the data to broad communities, that many scientific discoveries will draw on a combination of data from them, and that advances in computing will enable increasingly sophisticated analyses of the large and complex datasets that they will produce. We recommend that Astro2020 1) acknowledge the critical role that data archives will play for stellar populations and other science in the next decade, 2) recognize the opportunity that advances in computing will bring for survey data analysis, and 3) consider investments in Science Platform technology to bring these opportunities to fruition.
We propose an experiment, the Cosmic Accelerometer, designed to yield velocity precision of $leq 1$ cm/s with measurement stability over years to decades. The first-phase Cosmic Accelerometer, which is at the scale of the Astro2020 Small programs, wi ll be ideal for precision radial velocity measurements of terrestrial exoplanets in the Habitable Zone of Sun-like stars. At the same time, this experiment will serve as the technical pathfinder and facility core for a second-phase larger facility at the Medium scale, which can provide a significant detection of cosmological redshift drift on a 6-year timescale. This larger facility will naturally provide further detection/study of Earth twin planet systems as part of its external calibration process. This experiment is fundamentally enabled by a novel low-cost telescope technology called PolyOculus, which harnesses recent advances in commercial off the shelf equipment (telescopes, CCD cameras, and control computers) combined with a novel optical architecture to produce telescope collecting areas equivalent to standard telescopes with large mirror diameters. Combining a PolyOculus array with an actively-stabilized high-precision radial velocity spectrograph provides a unique facility with novel calibration features to achieve the performance requirements for the Cosmic Accelerometer.
Astrophotonics is the application of versatile photonic technologies to channel, manipulate, and disperse guided light from one or more telescopes to achieve scientific objectives in astronomy in an efficient and cost-effective way. The developments and demands from the telecommunication industry have driven a major boost in photonic technology and vice versa in the last 40 years. The photonic platform of guided light in fibers and waveguides has opened the doors to next-generation instrumentation for both ground- and space-based telescopes in optical and near/mid-IR bands, particularly for the upcoming extremely large telescopes (ELTs). The large telescopes are pushing the limits of adaptive optics to reach close to a near-diffraction-limited performance. The photonic devices are ideally suited for capturing this AO-corrected light and enabling new and exciting science such as characterizing exoplanet atmospheres. The purpose of this white paper is to summarize the current landscape of astrophotonic devices and their scientific impact, highlight the key issues, and outline specific technological and organizational approaches to address these issues in the coming decade and thereby enable new discoveries as we embark on the era of extremely large telescopes.
Over the past century, major advances in astronomy and astrophysics have been largely driven by improvements in instrumentation and data collection. With the amassing of high quality data from new telescopes, and especially with the advent of deep an d large astronomical surveys, it is becoming clear that future advances will also rely heavily on how those data are analyzed and interpreted. New methodologies derived from advances in statistics, computer science, and machine learning are beginning to be employed in sophisticated investigations that are not only bringing forth new discoveries, but are placing them on a solid footing. Progress in wide-field sky surveys, interferometric imaging, precision cosmology, exoplanet detection and characterization, and many subfields of stellar, Galactic and extragalactic astronomy, has resulted in complex data analysis challenges that must be solved to perform scientific inference. Research in astrostatistics and astroinformatics will be necessary to develop the state-of-the-art methodology needed in astronomy. Overcoming these challenges requires dedicated, interdisciplinary research. We recommend: (1) increasing funding for interdisciplinary projects in astrostatistics and astroinformatics; (2) dedicating space and time at conferences for interdisciplinary research and promotion; (3) developing sustainable funding for long-term astrostatisics appointments; and (4) funding infrastructure development for data archives and archive support, state-of-the-art algorithms, and efficient computing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا