ترغب بنشر مسار تعليمي؟ اضغط هنا

Semileptonic $B_c$ meson decays to S-wave charmonium states

117   0   0.0 ( 0 )
 نشر من قبل Sonali Patnaik
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the semileptonic decays of $B_c$ meson to S-wave charmonium states in the framework of relativistic independent quark model based on an average flavor-independent confining potential $U(r)$ in the scalar-vector harmonic form $U(r)=frac{1}{2}(1+gamma^0)(ar^2+V_0)$, where ($a$, $V_0$) are the potential parameters.The form factors for $B_c^+to eta_c /psi e^+ u_e$ transitions are studied in the physical kinematic range. Our predicted branching ratios (BR) for transitions to ground state charmonia are found comparatively large $sim $ $10^{-2}$, compared to those for transitions to radially excited 2S and 3S states. Like all other mpdel predictions, our predicted BR are obtained in the hierarchy: BR($B_c^+to eta_c /psi (3S)$) $<$ BR($B_c^+to eta_c/ psi (2S)$) $<$ BR($B_c^+to eta_c /psi (1S)$). The longitudinal ($Gamma_L$) and transverse polarization ($Gamma_T$) for $B_c to psi(ns)$ decay modes are predicted in the small and large $q^2$ - region as well as in the whole physical region. The ratios for such transitions are obtained $frac {Gamma_L}{Gamma_T} < 1$ throughout the kinematic range which means the $B_c^+$ meson transitions to vector meson charmonium states take place predominantly in transverse polarization mode. The theoretical predictions on these transitions could be tested in the on-going and forthcoming experiments at LHCb.

قيم البحث

اقرأ أيضاً

In this paper, we calculate the next-to-leading order (NLO) quantum chromodynamics (QCD) corrections to the exclusive processes $B_c^+to chi_{cJ}(h_c)pi^+$ in the framework of the nonrelativistic QCD (NRQCD) factorization formalism. The results show that NLO QCD corrections markedly enhance the branching ratios with $K$ factors of about 2.5. In combination with the study of $B_c^+to J/psipi^+$, we find that the NLO NRQCD prediction for the ratio of branching fractions $frac{mathcal{B}(B_c^+to chi_{c0}pi^+)}{mathcal{B}(B_c^+to J/psi pi^+)}$ is then compatible with the experimental measurement.
In this work, we discuss exclusive semileptonic $B_c$-meson decays: $B_cto eta_c(J/psi)l u$ and $B_cto D(D^*)l u$ in the framework of the relativistic independent quark(RIQ) model based on an average flavor independent confining potential in equally mixed scalar-vector harmonic form. We calculate the invariant form factors representing decay amplitudes from the overlapping integrals of meson wave functions derivable in the RIQ model. To evaluate the lepton mass effects in the semileptonic decays, we first study the $q^2$-dependence of the form factors in the accessible kinematic range of $q^2$ involved in the decay process in its $e^-$ and $tau^-$ mode separately. Similar studies on helicity amplitudes, $q^2-$spectra for different helicity contributions, and total $q^2$-spectra for each decay process are carried out separately in their $e^-$ and $tau^-$ modes. We predict the decay rates/ branching fractions, forward-backward asymmetry, and the asymmetry parameter in reasonable agreement with other model predictions, which can hopefully be tested in future experiments at the Tevatron and LHC. We also predict the observable $R$ which corresponds to the ratio of branching fractions for the decay process in its $e^-$ mode to its corresponding value in the $tau^-$ mode. Our results are comparable to another standard model(SM) predictions which highlight the failure of the lepton flavor universality hinting at new physics beyond SM for the explanation of the observed deviation of observable $R$ value from the corresponding SM predictions.
We calculate the next-to-leading order (NLO) quantum chromodynamics (QCD) corrections to inclusive processes $W^+to J/psi(eta_c)+c+bar{s}+X$ and $W^+to B_c(B_c^{*})+b+bar{s}+X$ in the framework of nonrelativistic QCD (NRQCD) factorization formalism. Result indicates that the NLO corrections are significant, and the uncertainties in theoretical predictions with NLO corrections are greatly reduced. The charmonium and $B_c$ meson yielding rates at the Large Hadron Collider (LHC) are given.
97 - Marina Artuso 2003
B meson semileptonic decays are a crucial tool in our studies of the quark mixing parameters Vcb and Vub. The interplay between experimental and theoretical challenges to achieve precision in the determination of these fundamental parameters is discussed.
Inspired by recent improved measurements of charm semileptonic decays at BESIII, we study a large set of $D(D_s)$-meson semileptonic decays where the hadron in the final state is one of $D^0$, $rho$, $omega$, $eta^{(prime)}$ in the case of $D^+$ deca ys, and $D^0$, $phi$, $K^0$, $K^ast(892)^0$, $eta^{(prime)}$ in the case of $D^+_s$ decays. The required hadronic form factors are computed in the full kinematical range of momentum transfer by employing the covariant confined quark model developed by us. A detailed comparison of the form factors with those from other approaches is provided. We calculate the decay branching fractions and their ratios, which show good agreement with available experimental data. We also give predictions for the forward-backward asymmetry and the longitudinal and transverse polarizations of the charged lepton in the final state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا