ترغب بنشر مسار تعليمي؟ اضغط هنا

Searching for z > 6.5 Analogs Near the Peak of Cosmic Star Formation

62   0   0.0 ( 0 )
 نشر من قبل Xinnan Du
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Strong [OIII]$lambdalambda$4959,5007+H$beta$ emission appears to be typical in star-forming galaxies at z > 6.5. As likely contributors to cosmic reionization, these galaxies and the physical conditions within them are of great interest. At z > 6.5, where Ly$alpha$ is greatly attenuated by the intergalactic medium, rest-UV metal emission lines provide an alternative measure of redshift and also constraints on the physical properties of star-forming regions and massive stars. We present the first statistical sample of rest-UV line measurements in z $sim$ 2 galaxies selected as analogs of those in the reionization era based on [OIII]$lambdalambda$4959,5007 EW or rest-frame U-B color. Our sample is drawn from the 3D-HST Survey and spans the redshift range 1.36 $leqslant$ z $leqslant$ 2.49. We find that the median Ly$alpha$ and CIII]$lambdalambda$1907,1909 EWs of our sample are significantly greater than those of z $sim$ 2 UV-continuum-selected star-forming galaxies. Measurements from both individual and composite spectra indicate a monotonic, positive correlation between CIII] and [OIII], while a lack of trend is observed between Ly$alpha$ and [OIII] at [OIII] EW < 1000$unicode{x212B}$. At higher [OIII] EW, extreme Ly$alpha$ emission starts to emerge. Using stacked spectra, we find that Ly$alpha$ and CIII] are significantly enhanced in galaxies with lower metallicity. Two objects in our sample appear comparable to z > 6.5 galaxies with exceptionally strong rest-UV metal line emission. These objects have significant CIV$lambdalambda$1548,1550, HeII$lambda$1640, and OIII]$lambdalambda$1661,1665 emission in addition to intense Ly$alpha$ or CIII]. Detailed characterization of these lower-redshift analogs provides unique insights into the physical conditions in z > 6.5 star-forming regions, motivating future observations of reionization-era analogs at lower redshifts.

قيم البحث

اقرأ أيضاً

We use high-resolution cosmological zoom-in simulations from the FIRE project to make predictions for the covering fractions of neutral hydrogen around galaxies at z=2-4. These simulations resolve the interstellar medium of galaxies and explicitly im plement a comprehensive set of stellar feedback mechanisms. Our simulation sample consists of 16 main halos covering the mass range M_h~10^9-6x10^12 Msun at z=2, including 12 halos in the mass range M_h~10^11-10^12 Msun corresponding to Lyman break galaxies (LBGs). We process our simulations with a ray tracing method to compute the ionization state of the gas. Galactic winds increase the HI covering fractions in galaxy halos by direct ejection of cool gas from galaxies and through interactions with gas inflowing from the intergalactic medium. Our simulations predict HI covering fractions for Lyman limit systems (LLSs) consistent with measurements around z~2-2.5 LBGs; these covering fractions are a factor ~2 higher than our previous calculations without galactic winds. The fractions of HI absorbers arising in inflows and in outflows are on average ~50% but exhibit significant time variability, ranging from ~10% to ~90%. For our most massive halos, we find a factor ~3 deficit in the LLS covering fraction relative to what is measured around quasars at z~2, suggesting that the presence of a quasar may affect the properties of halo gas on ~100 kpc scales. The predicted covering fractions, which decrease with time, peak at M_h~10^11-10^12 Msun, near the peak of the star formation efficiency in dark matter halos. In our simulations, star formation and galactic outflows are highly time dependent; HI covering fractions are also time variable but less so because they represent averages over large areas.
129 - L. Pantoni , M. Massardi , A. Lapi 2021
We present the ALMA view of 11 main-sequence DSFGs, (sub-)millimeter selected in the GOODS-S field, and spectroscopically confirmed to be at the peak of Cosmic SFH (z = 2-3). Our study combines the analysis of galaxy SED with ALMA continuum and CO sp ectral emission, by using ALMA Science Archive products at the highest spatial resolution currently available for our sample (< 1 arcsec). We include galaxy multi-band images and photometry (in the optical, radio and X-rays) to investigate the interlink between dusty, gaseous and stellar components and the eventual presence of AGN. We use multi-band sizes and morphologies to gain an insight on the processes that lead galaxy evolution, e.g. gas condensation, star formation, AGN feedback. The 11 DSFGs are very compact in the (sub-)millimeter (median r(ALMA) = 1.15 kpc), while the optical emission extends tolarger radii (median r(H)/r(ALMA) = 2.05). CO lines reveal the presence of a rotating disc of molecular gas, but we can not exclude either the presence of interactions and/or molecular outflows. Images at higher (spectral and spatial) resolution are needed to disentangle from the possible scenarios. Most of the galaxies are caught in the compaction phase, when gas cools and falls into galaxy centre, fuelling the dusty burst of star formation and the growing nucleus. We expect these DSFGs to be the high-zstar-forming counterparts of massive quiescent galaxies. Some features of CO emission in three galaxies are suggestive of forthcoming/ongoing AGN feedback, that is thought to trigger the morphological transition from star-forming disks to ETGs.
Star-forming clumps dominate the rest-frame ultraviolet morphology of galaxies at the peak of cosmic star formation. If turbulence driven fragmentation is the mechanism responsible for their formation, we expect their stellar mass function to follow a power-law of slope close to $-2$. We test this hypothesis performing the first analysis of the stellar mass function of clumps hosted in galaxies at $zsim 1-3.5$. The clump sample is gathered from the literature with similar detection thresholds and stellar masses determined in a homogeneous way. To overcome the small number statistics per galaxy (each galaxy hosts up to a few tens of clumps only), we combine all high-redshift clumps. The resulting clump mass function follows a power-law of slope $sim -1.7$ and flattens at masses below $2times 10^7$ M$_{odot}$. By means of randomly sampled clump populations, drawn out of a power-law mass function of slope $-2$, we test the effect of combining small clump populations, detection limits of the surveys, and blending on the mass function. Our numerical exercise reproduces all the features observed in the real clump mass function confirming that it is consistent with a power-law of slope $simeq -2$. This result supports the high-redshift clump formation through fragmentation in a similar fashion as in local galaxies, but under different gas conditions.
We use ALMA observations of four sub-millimetre galaxies (SMGs) at $zsim2-3$ to investigate the spatially resolved properties of the inter-stellar medium (ISM) at scales of 1--5 kpc (0.1--0.6$$). The velocity fields of our sources, traced by the $^{1 2}$CO($J$=3-2) emission, are consistent with disk rotation to first order, implying average dynamical masses of $sim$3$times10^{11}$M$_{odot}$ within two half-light radii. Through a Bayesian approach we investigate the uncertainties inherent to dynamically constraining total gas masses. We explore the covariance between the stellar mass-to-light ratio and CO-to-H$_{2}$ conversion factor, $alpha_{rm CO}$, finding values of $alpha_{rm CO}=1.1^{+0.8}_{-0.7}$ for dark matter fractions of 15 %. We show that the resolved spatial distribution of the gas and dust continuum can be uncorrelated to the stellar emission, challenging energy balance assumptions in global SED fitting. Through a stacking analysis of the resolved radial profiles of the CO(3-2), stellar and dust continuum emission in SMG samples, we find that the cool molecular gas emission in these sources (radii $sim$5--14 kpc) is clearly more extended than the rest-frame $sim$250 $mu$m dust continuum by a factor $>2$. We propose that assuming a constant dust-to-gas ratio, this apparent difference in sizes can be explained by temperature and optical-depth gradients alone. Our results suggest that caution must be exercised when extrapolating morphological properties of dust continuum observations to conclusions about the molecular gas phase of the ISM.
We investigate the mean star formation rates (SFRs) in the host galaxies of ~3000 optically selected QSOs from the SDSS survey within the Herschel-ATLAS fields, and a radio-luminous sub-sample, covering the redshift range of z = 0.2-2.5. Using WISE & Herschel photometry (12 - 500{mu}m) we construct composite SEDs in bins of redshift and AGN luminosity. We perform SED fitting to measure the mean infrared luminosity due to star formation, removing the contamination from AGN emission. We find that the mean SFRs show a weak positive trend with increasing AGN luminosity. However, we demonstrate that the observed trend could be due to an increase in black hole (BH) mass (and a consequent increase of inferred stellar mass) with increasing AGN luminosity. We compare to a sample of X-ray selected AGN and find that the two populations have consistent mean SFRs when matched in AGN luminosity and redshift. On the basis of the available virial BH masses, and the evolving BH mass to stellar mass relationship, we find that the mean SFRs of our QSO sample are consistent with those of main sequence star-forming galaxies. Similarly, the radio-luminous QSOs have mean SFRs that are consistent with both the overall QSO sample and with star-forming galaxies on the main sequence. In conclusion, on average QSOs reside on the main sequence of star-forming galaxies, and the observed positive trend between the mean SFRs and AGN luminosity can be attributed to BH mass and redshift dependencies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا