ﻻ يوجد ملخص باللغة العربية
Dark photons are particles invoked in some extensions of the Standard Model which could account for at least part of the dark matter content of the Universe. It has been proposed that the production of dark photons in stellar interiors could happen at a rate that depends on both, the dark photon mass and its coupling to Standard Model particles (the kinetic mixing parameter $chi$). In this work we aim at exploring the impact of dark photon productions in the stellar core of solar mass RGB stars during late evolutionary phases. We demonstrate that near the so-called RGB bump, dark photons production may be an energy sink for the star sufficiently significative to modify the extension of the star convective zones. We show that Asteroseismology is able to detect such variations in the structure, allowing us to predict an upper limit of $rm 900 eV$ and $5times 10^{-15}$ for the mass and kinetic mixing of the dark photons, respectively. We also demonstrate that additional constraints can be derived from the fact that dark photons increase the luminosity of the RGB tip over the current observational uncertainties. This work thus paves the way for an empirical approach to deepen the study of such dark-matter particles.
Many extensions of Standard Model (SM) include a dark sector which can interact with the SM sector via a light mediator. We explore the possibilities to probe such a dark sector by studying the distortion of the CMB spectrum from the blackbody shape
Even if Dark Matter (DM) is neutral under electromagnetism, it can still interact with the Standard Model (SM) via photon exchange from higher-dimensional operators. Here we classify the general effective operators coupling DM to photons, distinguish
We use the kinematics of $sim200,000$ giant stars that lie within $sim 1.5$ kpc of the plane to measure the vertical profile of mass density near the Sun. We find that the dark mass contained within the isodensity surface of the dark halo that passes
The efficiency of the transport of angular momentum and chemical elements inside intermediate-mass stars lacks proper calibration, thereby introducing uncertainties on a stars evolutionary pathway. Improvements require better estimation of stellar ma