ترغب بنشر مسار تعليمي؟ اضغط هنا

GASP XXIII: A jellyfish galaxy as an astrophysical laboratory of the baryonic cycle

314   0   0.0 ( 0 )
 نشر من قبل Bianca Poggianti dr
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

With MUSE, Chandra, VLA, ALMA and UVIT data from the GASP programme we study the multiphase baryonic components in a jellyfish galaxy (JW100) with a stellar mass 3.2 X 10^{11} M_sun hosting an AGN. We present its spectacular extraplanar tails of ionized and molecular gas, UV stellar light, X-ray and radio continuum emission. This galaxy represents an excellent laboratory to study the interplay between different gas phases and star formation, and the influence of gas stripping, gas heating, and AGN. We analyze the physical origin of the emission at different wavelengths in the tail, in particular in-situ star formation (related to Halpha, CO and UV emission), synchrotron emission from relativistic electrons (producing the radio continuum) and heating of the stripped interstellar medium (ISM) (responsible for the X-ray emission). We show the similarities and differences of the spatial distributions of ionized gas, molecular gas and UV light, and argue that the mismatch on small scales (1kpc) is due to different stages of the star formation process. We present the relation Halpha--X-ray surface brightness, which is steeper for star-forming regions than for diffuse ionised gas regions with high [OI]/Halpha ratio. We propose that ISM heating due to interaction with the intracluster medium (either for mixing, thermal conduction or shocks) is responsible for the X-ray tail, the observed [OI]-excess and the lack of star formation in the northern part of the tail. We also report the tentative discovery in the tail of the most distant (and among the brightest) currently known ULX, a point-like ultraluminous X-ray source commonly originating in a binary stellar system powered either by an intermediate-mass black hole or a magnetized neutron star.



قيم البحث

اقرأ أيضاً

We present JVLA-C observations of the HI gas in JO204, one of the most striking jellyfish galaxies from the GASP survey. JO204 is a massive galaxy in the low-mass cluster Abell 957 at z=0.04243. The HI map reveals an extended 90 kpc long ram-pressure stripped tail of neutral gas, stretching beyond the 30 kpc long ionized gas tail and pointing away from the cluster center. The HI mass seen in emission is (1.32 $ pm 0.13) times 10^{9} rm M_{odot}$, mostly located in the tail. The northern part of the galaxy disk has retained some HI gas, while the southern part has already been completely stripped and displaced into an extended unilateral tail. Comparing the distribution and kinematics of the neutral and ionized gas in the tail indicates a highly turbulent medium. Moreover, we observe associated HI absorption against the 11 mJy central radio continuum source with an estimated HI absorption column density of 3.2 $times 10^{20}$ cm$^{-2}$. The absorption profile is significantly asymmetric with a wing towards higher velocities. We modelled the HI absorption by assuming that the HI and ionized gas disks have the same kinematics in front of the central continuum source, and deduced a wider absorption profile than observed. The observed asymmetric absorption profile can therefore be explained by a clumpy, rotating HI gas disk seen partially in front of the central continuum source, or by ram-pressure pushing the neutral gas towards the center of the continuum source, triggering the AGN activity.
X-ray studies of jellyfish galaxies play a crucial role in understanding the interactions between the interstellar medium (ISM) and the intracluster medium (ICM). In this paper, we focused on the jellyfish galaxy JO201. By combining archival Chandra observations, MUSE H$alpha$ cubes, and maps of the emission fraction of the diffuse ionised gas, we investigated both its high energy spectral properties and the spatial correlation between its X-ray and optical emissions. The X-ray emission of JO201 is provided by both the Compton thick AGN (L$_{text{X}}^{0.5-10 text{keV}}$=2.7$cdot$10$^{41}$ erg s$^{-1}$, not corrected for intrinsic absorption) and an extended component (L$_{text{X}}^{0.5-10 , text{keV}}approx$1.9-4.5$cdot$10$^{41}$ erg s$^{-1}$) produced by a warm plasma (kT$approx$1 keV), whose luminosity is higher than expected from the observed star formation (L$_{text{X}}sim$3.8$cdot10^{40}$ erg s$^{-1}$). The spectral analysis showed that the X-ray emission is consistent with the thermal cooling of hot plasma. These properties are similar to the ones found in other jellyfish galaxies showing extended X-ray emission. A point-to-point analysis revealed that this X-ray emission closely follows the ISM distribution, whereas CLOUDY simulations proved that the ionisation triggered by this warm plasma would be able to reproduce the [OI]/H$alpha$ excess observed in JO201. We conclude that the galactic X-ray emitting plasma is originated on the surface of the ISM as a result of the ICM-ISM interplay. This process would entail the cooling and accretion of the ICM onto the galaxy, which could additionally fuel the star formation, and the emergence of [OI]/H$alpha$ excess in the optical spectrum.
We report evidence for star formation quenching in the central 8.6 kpc region of the jellyfish galaxy JO201 which hosts an active galactic nucleus, while undergoing strong ram pressure stripping. The ultraviolet imaging data of the galaxy disk reveal a region with reduced flux around the center of the galaxy and a horse shoe shaped region with enhanced flux in the outer disk. The characterization of the ionization regions based on emission line diagnostic diagrams shows that the region of reduced flux seen in the ultraviolet is within the AGN-dominated area. The CO J$_{2-1}$ map of the galaxy disk reveals a cavity in the central region. The image of the galaxy disk at redder wavelengths (9050-9250 $overset{lower.5emcirc}{mathrm{A}}$) reveals the presence of a stellar bar. The star formation rate map of the galaxy disk shows that the star formation suppression in the cavity occurred in the last few 10$^8$ yr. We present several lines of evidence supporting the scenario that suppression of star formation in the central region of the disk is most likely due to the feedback from the AGN. The observations reported here make JO201 a unique case of AGN feedback and environmental effects suppressing star formation in a spiral galaxy.
We present VLA HI observations of JO206, a prototypical ram-pressure stripped galaxy in the GASP sample. This massive galaxy (M$_{ast} =$ 8.5 $times$ 10$^{10}$ M$_{odot}$) is located at a redshift of $z =$ 0.0513, near the centre of the low-mass gala xy cluster, IIZw108 ($sigma sim575$ km/s). JO206 is characterised by a long tail ($geq$90 kpc) of ionised gas stripped away by ram-pressure. We find a similarly long HI tail in the same direction as the ionised gas tail and measure a total HI mass of $3.2 times 10^{9}$ M$_{odot}$. This is about half the expected HI mass given the stellar mass and surface density of JO206. A total of $1.8 times 10^{9}$ M$_{odot}$ (60%) of the detected HI is in the gas stripped tail. An analysis of the star formation rate shows that the galaxy is forming more stars compared to galaxies with the same stellar and HI mass. On average we find a HI gas depletion time of $sim$0.5 Gyr which is about four times shorter than that of normal spiral galaxies. We performed a spatially resolved analysis of the relation between star formation rate density and gas density in the disc and tail of the galaxy at the resolution of our HI data. The star formation efficiency of the disc is about 10 times higher than that of the tail at fixed HI surface densities. Both the inner and outer parts of JO206 show an enhanced star formation compared to regions of similar HI surface density in field galaxies. The enhanced star formation is due to ram-pressure stripping during the galaxys first infall into the cluster.
This paper presents a spatially-resolved kinematic study of the jellyfish galaxy JO201, one of the most spectacular cases of ram-pressure stripping (RPS) in the GASP (GAs Stripping Phenomena in Galaxies with MUSE) survey. By studying the environment of JO201, we find that it is moving through the dense intra-cluster medium of Abell 85 at supersonic speeds along our line of sight, and that it is likely accompanied by a small group of galaxies. Given the density of the intra-cluster medium and the galaxys mass, projected position and velocity within the cluster, we estimate that JO201 must so far have lost ~50% of its gas during infall via RPS. The MUSE data indeed reveal a smooth stellar disk, accompanied by large projected tails of ionised (Halpha) gas, composed of kinematically cold (velocity dispersion <40km/s) star-forming knots and very warm (>100km/s) diffuse emission which extend out to at least ~50 kpc from the galaxy centre. The ionised Halpha-emitting gas in the disk rotates with the stars out to ~6 kpc but in the disk outskirts becomes increasingly redshifted with respect to the (undisturbed) stellar disk. The observed disturbances are consistent with the presence of gas trailing behind the stellar component, resulting from intense face-on RPS happening along the line of sight. Our kinematic analysis is consistent with the estimated fraction of lost gas, and reveals that stripping of the disk happens outside-in, causing shock heating and gas compression in the stripped tails.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا