ترغب بنشر مسار تعليمي؟ اضغط هنا

The first six months of the Advanced LIGOs and Advanced Virgos third observing run with GRANDMA

88   0   0.0 ( 0 )
 نشر من قبل Sarah Antier
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the Global Rapid Advanced Network Devoted to the Multi-messenger Addicts (GRANDMA). The network consists of 21 telescopes with both photometric and spectroscopic facilities. They are connected together thanks to a dedicated infrastructure. The network aims at coordinating the observations of large sky position estimates of transient events to enhance their follow-up and reduce the delay between the initial detection and the optical confirmation. The GRANDMA program mainly focuses on follow-up of gravitational-wave alerts to find and characterise the electromagnetic counterpart during the third observational campaign of the Advanced LIGO and Advanced Virgo detectors. But it allows for any follow-up of transient alerts involving neutrinos or gamma-ray bursts, even with poor spatial localisation. We present the different facilities, tools, and methods we developed for this network, and show its efficiency using observations of LIGO/Virgo S190425z, a binary neutron star merger candidate. We furthermore report on all GRANDMA follow-up observations performed during the first six months of the LIGO-Virgo observational campaign, and we derive constraints on the kilonova properties assuming that the events locations were imaged by our telescopes.

قيم البحث

اقرأ أيضاً

GRANDMA is a network of 25 telescopes of different sizes, including both photometric and spectroscopic facilities. The network aims to coordinate follow-up observations of gravitational-wave candidate alerts, especially those with large localisation uncertainties, to reduce the delay between the initial detection and the optical confirmation. In this paper, we detail GRANDMAs observational performance during Advanced LIGO/Advanced Virgo Observing Run 3 (O3), focusing on the second part of O3; this includes summary statistics pertaining to coverage and possible astrophysical origin of the candidates. To do so, we quantify our observation efficiency in terms of delay between gravitational-wave candidate trigger time, observations, and the total coverage. Using an optimised and robust coordination system, GRANDMA followed-up about 90 % of the gravitational-wave candidate alerts, i.e. 49 out of 56 candidates. This led to coverage of over 9000 deg2 during O3. The delay between the gravitational-wave candidate trigger and the first observation was below 1.5 hour for 50 % of the alerts. We did not detect any electromagnetic counterparts to the gravitational-wave candidates during O3, likely due to the very large localisation areas (on average thousands of degrees squares) and relatively large distance of the candidates (above 200 Mpc for 60 % of BNS candidates). We derive constraints on potential kilonova properties for two potential binary neutron star coalescences (GW190425 and S200213t), assuming that the events locations were imaged.
GW170817 showed that neutron star mergers not only emit gravitational waves but also can release electromagnetic signatures in multiple wavelengths. Within the first half of the third observing run of the Advanced LIGO and Virgo detectors, there have been a number of gravitational wave candidates of compact binary systems for which at least one component is potentially a neutron star. In this article, we look at the candidates S190425z, S190426c, S190510g, S190901ap, and S190910h, predicted to have potentially a non-zero remnant mass, in more detail. All these triggers have been followed up with extensive campaigns by the astronomical community doing electromagnetic searches for their optical counterparts; however, according to the released classification, there is a high probability that some of these events might not be of extraterrestrial origin. Assuming that the triggers are caused by a compact binary coalescence and that the individual source locations have been covered during the EM follow-up campaigns, we employ three different kilonova models and apply them to derive possible constraints on the matter ejection consistent with the publicly available gravitational-wave trigger information and the lack of a kilonova detection. These upper bounds on the ejecta mass can be related to limits on the maximum mass of the binary neutron star candidate S190425z and to constraints on the mass-ratio, spin, and NS compactness for the potential black hole-neutron star candidate S190426c. Our results show that deeper electromagnetic observations for future gravitational wave events near the horizon limit of the advanced detectors are essential.
We report results of a search for an isotropic gravitational-wave background (GWB) using data from Advanced LIGOs and Advanced Virgos third observing run (O3) combined with upper limits from the earlier O1 and O2 runs. Unlike in previous observing ru ns in the advanced detector era, we include Virgo in the search for the GWB. The results are consistent with uncorrelated noise, and therefore we place upper limits on the strength of the GWB. We find that the dimensionless energy density $Omega_{rm GW}leq 5.8times 10^{-9}$ at the 95% credible level for a flat (frequency-independent) GWB, using a prior which is uniform in the log of the strength of the GWB, with 99% of the sensitivity coming from the band 20-76.6 Hz; $leq 3.4 times 10^{-9}$ at 25 Hz for a power-law GWB with a spectral index of 2/3 (consistent with expectations for compact binary coalescences), in the band 20-90.6 Hz; and $leq 3.9 times 10^{-10}$ at 25 Hz for a spectral index of 3, in the band 20-291.6 Hz. These upper limits improve over our previous results by a factor of 6.0 for a flat GWB. We also search for a GWB arising from scalar and vector modes, which are predicted by alternative theories of gravity; we place upper limits on the strength of GWBs with these polarizations. We demonstrate that there is no evidence of correlated noise of magnetic origin by performing a Bayesian analysis that allows for the presence of both a GWB and an effective magnetic background arising from geophysical Schumann resonances. We compare our upper limits to a fiducial model for the GWB from the merger of compact binaries. Finally, we combine our results with observations of individual mergers andshow that, at design sensitivity, this joint approach may yield stronger constraints on the merger rate of binary black holes at $z lesssim 2$ than can be achieved with individually resolved mergers alone. [abridged]
We present Searches After Gravitational-waves Using ARizona Observatories (SAGUARO), a comprehensive effort dedicated to the discovery and characterization of optical counterparts to gravitational wave (GW) events. SAGUARO utilizes ground-based facil ities ranging from 1.5m to 10m in diameter, located primarily in the Northern Hemisphere. We provide an overview of SAGUAROs telescopic resources, pipeline for transient detection, and database for candidate visualization. We describe SAGUAROs discovery component, which utilizes the $5$~deg$^2$ field-of-view optical imager on the Mt. Lemmon 1.5m telescope, reaching limits of $approx 21.3$~AB mag while rapidly tiling large areas. We also describe the follow-up component of SAGUARO, used for rapid vetting and monitoring of optical candidates. With the onset of Advanced LIGO/Virgos third observing run, we present results from the first three SAGUARO searches following the GW events S190408an, S190425z and S190426c, which serve as a valuable proof-of-concept of SAGUARO. We triggered and searched 15, 60 and 60 deg$^{2}$ respectively, 17.6, 1.4 and 41.8 hrs after the initial GW alerts. We covered 7.8, 3.0 and 5.1% of the total probability within the GW event localizations, reaching 3$sigma$ limits of 19.8, 21.3 and 20.8 AB mag, respectively. Although no viable counterparts associated with these events were found, we recovered 6 known transients and ruled out 5 potential candidates. We also present Large Binocular Telescope spectroscopy of PS19eq/SN2019ebq, a promising kilonova candidate that was later determined to be a supernova. With the ability to tile large areas and conduct detailed follow-up, SAGUARO represents a significant addition to GW counterpart searches.
Joint multi-messenger observations with gravitational waves and electromagnetic data offer new insights into the astrophysical studies of compact objects. The third Advanced LIGO and Advanced Virgo observing run began on April 1, 2019; during the ele ven months of observation, there have been 14 compact binary systems candidates for which at least one component is potentially a neutron star. Although intensive follow-up campaigns involving tens of ground and space-based observatories searched for counterparts, no electromagnetic counterpart has been detected. Following on a previous study of the first six months of the campaign, we present in this paper the next five months of the campaign from October 2019 to March 2020. We highlight two neutron star - black hole candidates (S191205ah, S200105ae), two binary neutron star candidates (S191213g and S200213t) and a binary merger with a possible neutron star and a MassGap component, S200115j. Assuming that the gravitational-wave candidates are of astrophysical origin and their location was covered by optical telescopes, we derive possible constraints on the matter ejected during the events based on the non-detection of counterparts. We find that the follow-up observations during the second half of the third observing run did not meet the necessary sensitivity to constrain the source properties of the potential gravitational-wave candidate. Consequently, we suggest that different strategies have to be used to allow a better usage of the available telescope time. We examine different choices for follow-up surveys to optimize sky localization coverage vs. observational depth to understand the likelihood of counterpart detection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا