ترغب بنشر مسار تعليمي؟ اضغط هنا

The exact solution for the free induction decay in a quasi-one-dimensional system in a multi-pulse NMR experiment

72   0   0.0 ( 0 )
 نشر من قبل Edward Feldman
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The exact solution for the free induction decay in a one-dimensional system in the multi-pulse experiment is obtained at both high and low temperatures in the approximation of nearest neighbor interactions. The experimental investigation is performed on a quasi-one-dimensional system of $^{19}$F nuclear spins in a single crystal of fluorapatite. The theoretical results are in a good agreement with the obtained experimental data.

قيم البحث

اقرأ أيضاً

We have characterized a novel photon-echo pulse sequence for a double-$Lambda$ type energy level system where the input and rephasing transitions are different to the applied $pi$-pulses. We show that despite having imperfect $pi$-pulses (associated with large coherent emission due to free induction decay), the noise added is only 0.019$pm$0.001 relative to the shot noise in the spectral mode of the echo. Using this echo pulse sequence in the `rephased amplified spontaneous emission (RASE) scheme cite{Ledingham2010} will allow for generation of entangled photon pairs that are in different frequency, temporal, and potentially spatial modes to any bright driving fields. The coherence and efficiency properties of this sequence were characterized in a Pr:YSO crystal.
Coherent sources of attosecond extreme ultraviolet (XUV) radiation present many challenges if their full potential is to be realized. While many applications benefit from the broadband nature of these sources, it is also desirable to produce narrow b and XUV pulses, or to study autoionizing resonances in a manner that is free of the broad ionization background that accompanies above-threshold XUV excitation. Here we demonstrate a method for controlling the coherent XUV free induction decay that results from using attosecond pulses to excite a gas, yielding a fully functional modulator for XUV wavelengths. We use an infrared (IR) control pulse to manipulate both the spatial and spectral phase of the XUV emission, sending the light in a direction of our choosing at a time of our choosing. This allows us to tailor the light using opto-optical modulation, similar to devices available in the IR and visible wavelength regions.
86 - P-F Duc , M.Savard , M. Petrescu 2014
In one of the most celebrated examples of the theory of universal critical phenomena, the phase transition to the superfluid state of $^{4}$He belongs to the same three dimensional $mathrm{O}(2)$ universality class as the onset of ferromagnetism in a lattice of classical spins with $XY$ symmetry. Below the transition, the superfluid density $rho_s$ and superfluid velocity $v_s$ increase as power laws of temperature described by a universal critical exponent constrained to be equal by scale invariance. As the dimensionality is reduced towards one dimension (1D), it is expected that enhanced thermal and quantum fluctuations preclude long-range order, thereby inhibiting superfluidity. We have measured the flow rate of liquid helium and deduced its superfluid velocity in a capillary flow experiment occurring in single $30~$nm long nanopores with radii ranging down from 20~nm to 3~nm. As the pore size is reduced towards the 1D limit, we observe: {it i)} a suppression of the pressure dependence of the superfluid velocity; {it ii)} a temperature dependence of $v_{s}$ that surprisingly can be well-fitted by a powerlaw with a single exponent over a broad range of temperatures; and {it iii)} decreasing critical velocities as a function of radius for channel sizes below $R simeq 20$~nm, in stark contrast with what is observed in micron sized channels. We interpret these deviations from bulk behaviour as signaling the crossover to a quasi-1D state whereby the size of a critical topological defect is cut off by the channel radius.
The equilibrium properties of a Janus fluid confined to a one-dimensional channel are exactly derived. The fluid is made of particles with two faces (active and passive), so that the pair interaction is that of hard spheres, except if the two active faces are in front of each other, in which case the interaction has a square-well attractive tail. Our exact solution refers to quenched systems (i.e., each particle has a fixed face orientation), but we argue by means of statistical-mechanical tools that the results also apply to annealed systems (i.e., each particle can flip its orientation) in the thermodynamic limit. Comparison between theoretical results and Monte Carlo simulations for quenched and annealed systems, respectively, shows an excellent agreement.
116 - Petr Seba , Daniel Vasata 2009
We study a simple one-dimensional quantum system on a circle with n scale free point interactions. The spectrum of this system is discrete and expressible as a solution of an explicit secular equation. However, its statistical properties are nontrivi al. The level spacing distribution between its neighboring odd and even levels displays a surprising agreement with the prediction obtained for the Gaussian Orthogonal Ensemble of random matrices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا