ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining the cosmic ray spectrum in the vicinity of the supernova remnant W28: from sub-GeV to multi-TeV energies

73   0   0.0 ( 0 )
 نشر من قبل Vo Hong Minh Phan
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Supernova remnants interacting with molecular clouds are ideal laboratories to study the acceleration of particles at shock waves and their transport and interactions in the surrounding interstellar medium. In this paper, we focus on the supernova remnant W28, which over the years has been observed in all energy domains from radio waves to very-high-energy gamma rays. The bright gamma-ray emission detected from molecular clouds located in its vicinity revealed the presence of accelerated GeV and TeV particles in the region. An enhanced ionization rate has also been measured by means of millimetre observations, but such observations alone cannot tell us whether the enhancement is due to low energy (MeV) cosmic rays (either protons or electrons) or the X-ray photons emitted by the shocked gas. The goal of this study is to determine the origin of the enhanced ionization rate and to infer from multiwavelength observations the spectrum of cosmic rays accelerated at the supernova remnant shock in the unprecedented range spanning from MeV to multi-TeV particle energies. We developed a model to describe the transport of X-ray photons into the molecular cloud, and we fitted the radio, millimeter, and gamma-ray data to derive the spectrum of the radiating particles. The contribution from X-ray photons to the enhanced ionization rate is negligible, and therefore the ionization must be due to cosmic rays. Even though we cannot exclude a contribution to the ionization rate coming from cosmic ray electrons, we show that a scenario where cosmic ray protons explain both the gamma-ray flux and the enhanced ionization rate provides the most natural fit to multiwavelength data. This strongly suggests that the intensity of CR protons is enhanced in the region for particle energies in a very broad range covering almost 6 orders of magnitude: from $lesssim 100$ MeV up to several tens of TeV.

قيم البحث

اقرأ أيضاً

The atmospheric Cerenkov imaging technique has been used to search for point-like and diffuse TeV gamma-ray emission from the southern supernova remnant, W28, and surrounding region. The search, made with the CANGAROO 3.8m telescope, encompasses a nu mber of interesting features, the supernova remnant itself, the EGRET source 3EG J1800-2338, the pulsar PSR J1801-23, strong 1720 MHz OH masers and molecular clouds on the north and east boundaries of the remnant. An analysis tailored to extended and off-axis point sources was used, and no evidence for TeV gamma-ray emission from any of the features described above was found in data taken over the 1994 and 1995 seasons. Our upper limit (E>1.5 TeV) for a diffuse source of radius 0.25deg encompassing both molecular clouds was calculated at 6.64e-12 photons cm^-2 s^-1 (from 1994 data), and interpreted within the framework of a model predicting TeV gamma-rays from shocked-accelerated hadrons. Our upper limit suggests the need for some cutoff in the parent spectrum of accelerated hadrons and/or slightly steeper parent spectra than that used here (-2.1). As to the nature of 3EG J1800-2338, it possibly does not result entirely from pi-zero decay, a conclusion also consistent with its location in relation to W28.
Interstellar medium clouds in the W28 region are emitting gamma-rays and it is likely that the W28 supernova remnant is responsible, making W28 a prime candidate for the study of cosmic-ray acceleration and diffusion. Understanding the influence of b oth supernova remnant shocks and cosmic rays on local molecular clouds can help to identify multi-wavelength signatures of probable cosmic-ray sources. To this goal, transitions of OH, SiO, NH3, HCO+ and CS have complemented CO in allowing a characterization of the chemically rich environment surrounding W28. This remnant has been an ideal test-bed for techniques that will complement arcminute-scale studies of cosmic-ray source candidates with future GeV-PeV gamma-ray observations.
The precise measurement of the spectrum of protons, the most abundant component of the cosmic radiation, is necessary to understand the source and acceleration of cosmic rays in the Milky Way. This work reports the measurement of the cosmic ray proto n fluxes with kinetic energies from 40 GeV to 100 TeV, with two and a half years of data recorded by the DArk Matter Particle Explorer (DAMPE). This is the first time an experiment directly measures the cosmic ray protons up to ~100 TeV with a high statistics. The measured spectrum confirms the spectral hardening found by previous experiments and reveals a softening at ~13.6 TeV, with the spectral index changing from ~2.60 to ~2.85. Our result suggests the existence of a new spectral feature of cosmic rays at energies lower than the so-called knee, and sheds new light on the origin of Galactic cosmic rays.
230 - F. Alemanno , Q. An , P. Azzarello 2021
The measurement of the energy spectrum of cosmic ray helium nuclei from 70 GeV to 80 TeV using 4.5 years of data recorded by the DArk Matter Particle Explorer (DAMPE) is reported in this work. A hardening of the spectrum is observed at an energy of a bout 1.3 TeV, similar to previous observations. In addition, a spectral softening at about 34 TeV is revealed for the first time with large statistics and well controlled systematic uncertainties, with an overall significance of $4.3sigma$. The DAMPE spectral measurements of both cosmic protons and helium nuclei suggest a particle charge dependent softening energy, although with current uncertainties a dependence on the number of nucleons cannot be ruled out.
We present a measurement of the cosmic-ray electron+positron spectrum between 7 GeV and 2 TeV performed with almost seven years of data collected with the Fermi Large Area Telescope. We find that the spectrum is well fit by a broken power law with a break energy at about 50 GeV. Above 50 GeV, the spectrum is well described by a single power law with a spectral index of $3.07 pm 0.02 ; (text{stat+syst}) pm 0.04 ; (text{energy measurement})$. An exponential cutoff lower than 1.8 TeV is excluded at 95% CL.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا