ﻻ يوجد ملخص باللغة العربية
We present a cascade deep neural network to segment retinal vessels in volumetric optical coherence tomography (OCT). Two types of knowledge are infused into the network for confining the searching regions. (1) Histology. The retinal vessels locate between the inner limiting membrane and the inner nuclear layer of human retina. (2) Imaging. The red blood cells inside the vessels scatter the OCT probe light forward and form projection shadows on the retinal pigment epithelium (RPE) layer, which is avascular thus perfect for localizing the retinal vessel in transverse plane. Qualitative and quantitative comparison results show that the proposed method outperforms the state-of-the-art deep learning and graph-based methods. This work demonstrates, instead of modifying the architectures of the deep networks, incorporating proper prior knowledge in the design of the image processing framework could be an efficient approach for handling such specific tasks.
Automated drusen segmentation in retinal optical coherence tomography (OCT) scans is relevant for understanding age-related macular degeneration (AMD) risk and progression. This task is usually performed by segmenting the top/bottom anatomical interf
Automated vascular segmentation on optical coherence tomography angiography (OCTA) is important for the quantitative analyses of retinal microvasculature in neuroretinal and systemic diseases. Despite recent improvements, artifacts continue to pose c
As an in situ combustion diagnostic tool, Tunable Diode Laser Absorption Spectroscopy (TDLAS) tomography has been widely used for imaging of two-dimensional temperature distributions in reactive flows. Compared with the computational tomographic algo
With the development of the super-resolution convolutional neural network (SRCNN), deep learning technique has been widely applied in the field of image super-resolution. Previous works mainly focus on optimizing the structure of SRCNN, which have be
With the FDA approval of Artificial Intelligence (AI) for point-of-care clinical diagnoses, model generalizability is of the utmost importance as clinical decision-making must be domain-agnostic. A method of tackling the problem is to increase the da