ترغب بنشر مسار تعليمي؟ اضغط هنا

Combinatorial results for network-based models of metabolic origins

84   0   0.0 ( 0 )
 نشر من قبل Mike Steel Prof.
 تاريخ النشر 2019
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A key step in the origin of life is the emergence of a primitive metabolism. This requires the formation of a subset of chemical reactions that is both self-sustaining and collectively autocatalytic. A generic theory to study such processes (called RAF theory) has provided a precise and computationally effective way to address these questions, both on simulated data and in laboratory studies. One of the classic applications of this theory (arising from Stuart Kauffmans pioneering work in the 1980s) involves networks of polymers under cleavage and ligation reactions; in the first part of this paper, we provide the first exact description of the number of such reactions under various model assumptions. Conclusions from earlier studies relied on either approximations or asymptotic counting, and we show that the exact counts lead to similar (though not always identical) asymptotic results. In the second part of the paper, we solve some questions posed in more recent papers concerning the computational complexity of some key questions in RAF theory. In particular, although there is a fast algorithm to determine whether or not a catalytic reaction network contains a subset that is both self-sustaining and autocatalytic (and, if so, find one), determining whether or not sets exist that satisfy certain additional constraints exist turns out to be NP-complete.



قيم البحث

اقرأ أيضاً

Background: Nowadays, the reconstruction of genome scale metabolic models is a non-automatized and interactive process based on decision taking. This lengthy process usually requires a full year of one persons work in order to satisfactory collect, a nalyze and validate the list of all metabolic reactions present in a specific organism. In order to write this list, one manually has to go through a huge amount of genomic, metabolomic and physiological information. Currently, there is no optimal algorithm that allows one to automatically go through all this information and generate the models taking into account probabilistic criteria of unicity and completeness that a biologist would consider. Results: This work presents the automation of a methodology for the reconstruction of genome scale metabolic models for any organism. The methodology that follows is the automatized version of the steps implemented manually for the reconstruction of the genome scale metabolic model of a photosynthetic organism, {it Synechocystis sp. PCC6803}. The steps for the reconstruction are implemented in a computational platform (COPABI) that generates the models from the probabilistic algorithms that have been developed. Conclusions: For validation of the developed algorithm robustness, the metabolic models of several organisms generated by the platform have been studied together with published models that have been manually curated. Network properties of the models like connectivity and average shortest mean path of the different models have been compared and analyzed.
Background: The study of genome-scale metabolic models and their underlying networks is one of the most important fields in systems biology. The complexity of these models and their description makes the use of computational tools an essential elemen t in their research. Therefore there is a strong need of efficient and versatile computational tools for the research in this area. Results: In this manuscript we present PyNetMet, a Python library of tools to work with networks and metabolic models. These are open-source free tools for use in a Python platform, which adds considerably versatility to them when compared with their desktop software similars. On the other hand these tools allow one to work with different standards of metabolic models (OptGene and SBML) and the fact that they are programmed in Python opens the possibility of efficient integration with any other already existing Python tool. Conclusions: PyNetMet is, therefore, a collection of computational tools that will facilitate the research work with metabolic models and networks.
Metabolism plays a central role in cell physiology because it provides the molecular machinery for growth. At the genome-scale, metabolism is made up of thousands of reactions interacting with one another. Untangling this complexity is key to underst and how cells respond to genetic, environmental, or therapeutic perturbations. Here we discuss the roles of two complementary strategies for the analysis of genome-scale metabolic models: Flux Balance Analysis (FBA) and network science. While FBA estimates metabolic flux on the basis of an optimisation principle, network approaches reveal emergent properties of the global metabolic connectivity. We highlight how the integration of both approaches promises to deliver insights on the structure and function of metabolic systems with wide-ranging implications in discovery science, precision medicine and industrial biotechnology.
A wide range of applications and research has been done with genome-scale metabolic models. In this work we describe a methodology for comparing metabolic networks constructed from genome-scale metabolic models and how to apply this comparison in ord er to infer evolutionary distances between different organisms. Our methodology allows a quantification of the metabolic differences between different species from a broad range of families and even kingdoms. This quantification is then applied in order to reconstruct phylogenetic trees for sets of various organisms.
A system-level framework of complex microbe-microbe and host-microbe chemical cross-talk would help elucidate the role of our gut microbiota in health and disease. Here we report a literature-curated interspecies network of the human gut microbiota, called NJS16. This is an extensive data resource composed of ~570 microbial species and 3 human cell types metabolically interacting through >4,400 small-molecule transport and macromolecule degradation events. Based on the contents of our network, we develop a mathematical approach to elucidate representative microbial and metabolic features of the gut microbial community in a given population, such as a disease cohort. Applying this strategy to microbiome data from type 2 diabetes patients reveals a context-specific infrastructure of the gut microbial ecosystem, core microbial entities with large metabolic influence, and frequently-produced metabolic compounds that might indicate relevant community metabolic processes. Our network presents a foundation towards integrative investigations of community-scale microbial activities within the human gut.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا