ترغب بنشر مسار تعليمي؟ اضغط هنا

Analytic solutions of the modified Langevin equation in a mean-field model

112   0   0.0 ( 0 )
 نشر من قبل Yury A. Koksharov
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Yury A. Koksharov




اسأل ChatGPT حول البحث

Approximate analytical solutions of the modified Langevin equation are obtained. These solutions are relatively simple and enough accurate. They are illustrated by considering a mean-field model of a system with interacting superparamagnetic particles. Within the framework of this model system we derived analytical approximate formulas for the temperature dependencies of the saturation and remnant magnetization, coercive force, initial magnetic susceptibility as well as for the law of approach to saturation. We obtained also some exact analytical relationships for the coercive force. We found remarkable similarity between the approximate cubic equation, which is resulted from the modified Langevin equation, and the exact equation resulting from the divergence condition of a solution derivative. The analytical formulas obtained in this work can be used in various models (not only magnetic ones), where the modified Langevin equation is applied.



قيم البحث

اقرأ أيضاً

230 - A.V. Plyukhin 2011
It is known that in the regime of superlinear diffusion, characterized by zero integral friction (vanishing integral of the memory function), the generalized Langevin equation may have non-ergodic solutions which do not relax to equilibrium values. I t is shown that the equation may have non-ergodic (non-stationary) solutions even if the integral of the memory function is finite and diffusion is normal.
We propose a mean field theory for the localization of damage in a quasistatic fuse model on a cylinder. Depending on the quenched disorder distribution of the fuse thresholds, we show analytically that the system can either stay in a percolation reg ime up to breakdown, or start at some current level to localize starting from the smallest scale (lattice spacing), or instead go to a diffuse localization regime where damage starts to concentrate in bands of width scaling as the width of the system, but remains diffuse at smaller scales. Depending on the nature of the quenched disorder on the fuse thresholds, we derive analytically the phase diagram of the system separating these regimes and the current levels for the onset of these possible localizations. We compare these predictions to numerical results.
For the Langevin model of the dynamics of a Brownian particle with perturbations orthogonal to its current velocity, in a regime when the particle velocity modulus becomes constant, an equation for the characteristic function $psi (t,lambda )=Mleft[e xp (lambda ,x(t))/V={rm v}(0)right]$ of the position $x(t)$ of the Brownian particle. The obtained results confirm the conclusion that the model of the dynamics of a Brownian particle, which constructed on the basis of an unconventional physical interpretation of the Langevin equations, i. e. stochastic equations with orthogonal influences, leads to the interpretation of an ensemble of Brownian particles as a system with wave properties. These results are consistent with the previously obtained conclusions that, with a certain agreement of the coefficients in the original stochastic equation, for small random influences and friction, the Langevin equations lead to a description of the probability density of the position of a particle based on wave equations. For large random influences and friction, the probability density is a solution to the diffusion equation, with a diffusion coefficient that is lower than in the classical diffusion model.
We consider a modification of the well studied Hamiltonian Mean-Field model by introducing a hard-core point-like repulsive interaction and propose a numerical integration scheme to integrate numerically its dynamics. Our results show that the outcom e of the initial violent relaxation is altered, and also that the phase-diagram is modified with a critical temperature at a higher value than in the non-collisional counterpart.
We show that an high temperature expansion at fixed order parameter can be derived for the quantum Ising model. The basic point is to consider a statistical generating functional associated to the local spin state. The probability at thermal equilibr ium of this state reflects directly the occurrence of a spontaneous symmetry breaking. It is possible to recover the expansion around the mean field in the system dimensionality if the ``direction in the Hilbert space of local spin states is suitably chosen. Results for the free energy at the critical temperature, as a function of the transverse field, in first order approximation in the inverse system dimensionality are compared with those of the standard approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا