ﻻ يوجد ملخص باللغة العربية
An important goal of spintronics is to covert a charge current into a spin current with a controlled spin polarization that can exert torques on an adjacent magnetic layer. Here we demonstrate such torques in a two ferromagnet system. A CoNi multilayer is used as a spin current source in a sample with structure CoNi/Au/CoFeB. Spin torque ferromagnetic resonance is used to measure the torque on the CoFeB layer. The response as a function of the applied field angle and current is consistent with the symmetry expected for a torques produced by the planar Hall effect originating in CoNi. We find the strength of this effect to be comparable to that of the spin Hall effect in platinum, indicating that the planar Hall effect holds potential as a spin current source with a controllable polarization direction.
Spin-orbit torques in bilayers of ferromagnetic and nonmagnetic materials hold promise for energy efficient switching of magnetization in nonvolatile magnetic memories. Previously studied spin Hall and Rashba torques originate from spin-orbit interac
An intriguing property of three-dimensional (3D) topological insulator (TI) is the existence of surface states with spin-momentum locking, which offers a new frontier of exploration in spintronics. Here, we report the observation of a new type of Hal
We experimentally study the interlayer interaction in a magnetic multilayer system ferromagnet/insulator/ferromagnet with different spacer thickness. We demonstrate that the sign and the magnitude of the interaction can be deduced from the FMR peak s
We identify and investigate thermal spin transport phenomena in sputter-deposited Pt/NiFe$_2$O$_{textrm{4-x}}$ ($4geq x geq 0$) bilayers. We separate the voltage generated by the spin Seebeck effect from the anomalous Nernst effect contributions and
The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT) /ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromag