ﻻ يوجد ملخص باللغة العربية
Single photons carrying spin angular momentum (SAM), i.e., circularly polarized single photons generated typically by subjecting a quantum emitter (QE) to a strong magnetic field at low temperatures are at the core of chiral quantum optics enabling non-reciprocal single-photon configurations and deterministic spin-photon interfaces. Here we propose a conceptually new approach to the room-temperature generation of SAM-coded single photons (SSPs) entailing QE non-radiative coupling to surface plasmons that are transformed, by interacting with an optical metasurface, into a collimated stream of SSPs with the designed handedness. We report on the design, fabrication and characterization of SSP sources consisting of dielectric circular nanoridges with azimuthally varying widths deterministically fabricated on a dielectric-protected silver film around a nanodiamond containing a nitrogen-vacancy centre. With properly engineered phases of QE-originated fields scattered by nanoridges, the out-coupled photons feature a well-defined SAM (with the chirality > 0.8) and high directionality (collection efficiency up to 92%).
The rapid generation of non-classical light serves as the foundation for exploring quantum optics and developing applications such as secure communication or generation of NOON-states. While strongly coupled quantum dot-photonic crystal resonator sys
Electromagnetic signals in circuits consist of discrete photons, though conventional voltage sources can only generate classical fields with a coherent superposition of many different photon numbers. While these classical signals can control and meas
Solid-state quantum emitters are excellent sources of on-demand indistinguishable or entangled photons and can host long-lived spin memories, crucial resources for photonic quantum information applications. However, their scalability remains an outst
We report on the experimental demonstration of single photon state generation and characterization in an electron microscope. In this aim we have used low intensity relativistic (energy between 60kV and 100 keV) electrons beams focused in a ca 1 nm p
High temporal stability and spin dynamics of individual nitrogen-vacancy (NV) centers in diamond crystals make them one of the most promising quantum emitters operating at room temperature. We demonstrate a chip-integrated cavity-coupled emission int