ترغب بنشر مسار تعليمي؟ اضغط هنا

The infrared bands of polycyclic aromatic hydrocarbons in the 1.6-1.7 {mu}m wavelength region

28   0   0.0 ( 0 )
 نشر من قبل Tao Chen
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context. The 3.3 $mu$m aromatic C-H stretching band of polycyclic aromatic hydrocarbon (PAH) molecules seen in a wide variety of astrophysical regions is often accompanied by a series of weak satellite bands at ~3.4-3.6 $mu$m. One of these sources, IRAS 21282+5050, a planetary nebula, also exhibits a weak band at ~1.68 $mu$m. While the satellite features at ~3.4-3.6 $mu$m are often attributed to the anharmonicities of PAHs, it is not clear whether overtones or combination bands dominate the 1.68 $mu$m feature. Aims. In this work, we examine the anharmonic spectra of eight PAH molecules, including anthracene, tetracene, pentacene, phenanthrene, chrysene, benz[a]anthracene, pyrene, and perylene, to explore the origin of the infrared bands in the 1.6-1.7 $mu$m waveelngth region. Methods. Density Functional Theory (DFT) in combination with the vibrational second-order perturbation theory (VPT2) is utilized for computing the anharmonic spectra of PAHs. To simulate the vibrational excitation process of PAHs, the Wang-Landau random walk technique is employed. Results. All the dominant bands in the 1.6-1.7 $mu$m wavelength range and in the 3.1-3.5 $mu$m C-H stretching region are calculated and tabulated. It is demonstrated that combination bands dominate the 1.6-1.7 $mu$m region, while overtones are rare and weak in this region. We also calculate the intensity ratios of the 3.1-3.5 $mu$m C-H stretching features to the bands in the 1.6-1.7 $mu$m region, $I_{3.1-3.5}/I_{1.6-1.7}$, for both ground and vibrationally excited states. On average, we obtain $langle I_{3.1-3.5}/I_{1.6-1.7} rangle$ $approx$ 12.6 and $langle I_{3.1-3.5}/I_{1.6-1.7} rangle$ $approx$ 17.6 for PAHs at ground states and at vibrationally excited states, respectively.



قيم البحث

اقرأ أيضاً

We report new correlations between ratios of band intensities of the 15-20 {mu}m emission bands of polycyclic aromatic hydrocarbons (PAHs) in a sample of fifty-seven sources observed with Spitzer/IRS. This sample includes Large Magellanic Cloud point sources from the SAGE-Spec survey, nearby galaxies from the SINGS survey, two Galactic ISM cirrus sources and the spectral maps of the Galactic reflection nebulae NGC 2023 and NGC 7023. We find that the 16.4, 17.4 and 17.8 {mu}m band intensities are inter-correlated in all environments. In NGC 2023 and NGC 7023 these bands also correlate with the 11.0 and 12.7 {mu}m band intensities. The 15.8 {mu}m band correlates only with the 15-20 {mu}m plateau and the 11.2 {mu}m emission. We examine the spatial morphology of these bands and introduce radial cuts. We find that these bands can be spatially organized into three sets: the 12.7, 16.4 and 17.8 {mu}m bands; the 11.2, 15.8 {mu}m bands and the 15-18 {mu}m plateau; and the 11.0 and 17.4 {mu}m bands. We also find that the spatial distribution of the 12.7, 16.4 and 17.8 {mu}m bands can be reconstructed by averaging the spatial distributions of the cationic 11.0 {mu}m and neutral 11.2 {mu}m bands. We conclude that the 17.4 {mu}m band is dominated by cations, the 15.8 {mu}m band by neutral species, and the 12.7, 16.4 and 17.8 {mu}m bands by a combination of the two. These results highlight the importance of PAH ionization for spatially differentiating sub-populations by their 15-20 {mu}m emission variability.
We report on a common fragment ion formed during the electron-ionization-induced fragmentation of three different three-ring polycyclic aromatic hydrocarbons (PAHs), fluorene (C$_{13}$H$_{10}$), 9,10-dihydrophenanthrene (C$_{14}$H$_{12}$), and 9,10-d ihydroanthracene (C$_{14}$H$_{12}$). The infrared spectra of the mass-isolated product ions with $m/z=165$ were obtained in a Fourier transform ion cyclotron resonance mass spectrometer whose cell was placed inside the optical cavity of an infrared free-electron laser, thus providing the high photon fluence required for efficient infrared multiple-photon dissociation. The infrared spectra of the $m/z=165$ species generated from the three different precursors were found to be similar, suggesting the formation of a single C$_{13}$H$_{9}^+$ isomer. Theoretical calculations using density functional theory (DFT) revealed the fragments identity as the closed-shell fluorenyl cation. Decomposition pathways from each parent precursor to the fluorenyl ion are proposed on the basis of DFT calculations. The identification of a single fragmentation product from three different PAHs supports the notion of the existence of common decomposition pathways of PAHs in general and can aid in understanding the fragmentation chemistry of astronomical PAH species.
Mixtures of polycylic aromatic hydrocarbons (PAHs) have been produced by means of laser pyrolysis. The main fraction of the extracted PAHs were primarily medium-sized, up to a maximum size of 38 carbon atoms per molecule. The use of different extract ion solvents and subsequent chromatographic fractionation provided mixtures of different size distributions. UV-VIS absorption spectra have been measured at low temperature by matrix isolation spectroscopy and at room temperature with PAHs as film-like deposits on transparent substrates. In accordance with semi-empirical calculations, our findings suggest that large PAHs with sizes around 50 to 60 carbon atoms per molecule could be responsible for the interstellar UV bump at 217.5 nm.
The electronic and optical properties of polycyclic aromatic hydrocarbons (PAHs) present a strong dependence on their size and geometry. We tackle this issue by analyzing the spectral features of two prototypical classes of PAHs, belonging to D6h and D2h symmetry point groups and related to coronene as multifunctional seed. While the size variation induces an overall red shift of the spectra and a redistribution of the oscillator strength between the main peaks, a lower molecular symmetry is responsible for the appearance of new optical features. Along with broken molecular orbital degeneracies, optical peaks split and dark states are activated in the low-energy part of the spectrum. Supported by a systematic analysis of the composition and the character of the optical transitions, our results contribute in shedding light to the mechanisms responsible for spectral modifications in the visible and near UV absorption bands of medium-size PAHs.
We report new properties of the 11 and 12.7 {mu}m emission complexes of polycyclic aromatic hydrocarbons (PAHs) by applying a Gaussian-based decomposition technique. Using high-resolution textit{Spitzer} Space Telescope data, we study in detail the s pectral and spatial characteristics of the 11 and 12.7 {mu}m emission bands in maps of reflection nebulae NGC 7023 and NGC 2023 (North and South) and the star-forming region M17. Profile variations are observed in both the 11 and 12.7 {mu}m emission bands. We identify a neutral contribution to the traditional 11.0 {mu}m PAH band and a cationic contribution to the traditional 11.2 {mu}m band, the latter of which affects the PAH class of the 11.2 {mu}m emission in our sample. The peak variations of the 12.7 {mu}m complex are explained by the competition between two underlying blended components. The spatial distributions of these components link them to cations and neutrals. We conclude that the 12.7 {mu}m emission originates in both neutral and cationic PAHs, lending support to the use of the 12.7/11.2 intensity ratio as a charge proxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا