ترغب بنشر مسار تعليمي؟ اضغط هنا

Gate field effects on the topological insulator BiSbTeSe2 interface

341   0   0.0 ( 0 )
 نشر من قبل Shuanglong Liu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Interfaces between two topological insulators are of fundamental interest in condensed matter physics. Inspired by experimental efforts, we study interfacial processes between two slabs of BiSbTeSe2 (BSTS) via first principles calculations. Topological surface states are absent for the BSTS interface at its equilibrium separation, but our calculations show that they appear if the inter-slab distance is greater than 6 Ang. More importantly, we find that topological interface states can be preserved by inserting two or more layers of hexagonal boron nitride between the two BSTS slabs. In experiments, the electric current tunneling through the interface is insensitive to back gate voltage when the bias voltage is small. Using a first-principles based method that allows us to simulate gate field, we show that at low bias the extra charge induced by a gate voltage resides on the surface that is closest to the gate electrode, leaving the interface almost undoped. This provides clues to understand the origin of the observed insensitivity of transport properties to back voltage at low bias. Our study resolves a few questions raised in experiment, which does not yet offer a clear correlation between microscopic physics and transport data. We provide a road map for the design of vertical tunneling junctions involving the interface between two topological insulators.

قيم البحث

اقرأ أيضاً

Thin films of topological insulator Bi_2Se_3 were deposited directly on insulating ferromagnetic EuS. Unusual negative magnetoresistance was observed near the zero field below the Curie temperature (T_C), resembling the weak localization effect; wher eas the usual positive magnetoresistance was recovered above T_C. Such negative magnetoresistance was only observed for Bi_2Se_3 layers thinner than t~4nm, when its top and bottom surfaces are coupled. These results provide evidence for a proximity effect between a topological insulator and an insulating ferromagnet, laying the foundation for future realization of the half-integer quantized anomalous Hall effect in three-dimensional topological insulators.
The magnetic proximity effect is a fundamental feature of heterostructures composed of layers of topological insulators and magnetic materials since it underlies many potential applications in devices with novel quantum functionality. Within density functional theory we study magnetic proximity effect at the 3D topological insulator/magnetic insulator (TI/MI) interface in Bi$_2$Se$_3$/MnSe(111) system as an example. We demonstrate that a gapped ordinary bound state which spectrum depends on the interface potential arises in the immediate region of the interface. The gapped topological Dirac state also arises in the system owing to relocation to deeper atomic layers of topological insulator. The gap in the Dirac cone is originated from an overlapping of the topological and ordinary interfacial states. This result being also corroborated by the analytic model, is a key aspect of the magnetic proximity effect mechanism in the TI/MI structures.
We demonstrate controllable shift of the threshold voltage and the turn-on voltage in pentacene thin film transistors and rubrene single crystal field effect transistors (FET) by the use of nine organosilanes with different functional groups. Prior t o depositing the organic semiconductors, the organosilanes were applied to the SiO2 gate insulator from solution and form a self assembled monolayer (SAM). The observed shift of the transfer characteristics range from -2 to 50 V and can be related to the surface potential of the layer next to the transistor channel. Concomitantly the mobile charge carrier concentration at zero gate bias reaches up to 4*10^12/cm^2. In the single crystal FETs the measured transfer characteristics are also shifted, while essentially maintaining the high quality of the subthreshold swing. The shift of the transfer characteristics is governed by the built-in electric field of the SAM and can be explained using a simple energy level diagram. In the thin film devices, the subthreshold region is broadened, indicating that the SAM creates additional trap states, whose density is estimated to be of order 1*10^12/cm^2.
Atomically sharp epitaxial growth of Bi2Se3 films is achieved on Si (111) substrate with MBE (Molecular Beam Epitaxy). Two-step growth process is found to be a key to achieve interfacial-layer-free epitaxial Bi2Se3 films on Si substrates. With a sing le-step high temperature growth, second phase clusters are formed at an early stage. On the other hand, with low temperature growth, the film tends to be disordered even in the absence of a second phase. With a low temperature initial growth followed by a high temperature growth, second-phase-free atomically sharp interface is obtained between Bi2Se3 and Si substrate, as verified by RHEED (Reflection High Energy Electron Diffraction), TEM (Transmission Electron Microscopy) and XRD (X-Ray Diffraction). The lattice constant of Bi2Se3 is observed to relax to its bulk value during the first quintuple layer according to RHEED analysis, implying the absence of strain from the substrate. TEM shows a fully epitaxial structure of Bi2Se3 film down to the first quintuple layer without any second phase or an amorphous layer.
The charge-current-induced spin polarization is a key property of topological insulators for their applications in spintronics. However, topological surface states are expected to give rise to only one type of spin polarization for a given current di rection, which has been a limiting factor for spin manipulations. Here we report that in devices based on the bulk-insulating topological insulator BiSbTeSe2, an unexpected switching of spin polarization was observed upon changing the chemical potential. The spin polarization expected from the topological surface states was detected in a heavily electron-doped device, whereas the opposite polarization was reproducibly observed in devices with low carrier densities. We propose that the latter type of spin polarization stems from topologically-trivial two-dimensional states with a large Rashba spin splitting, which are caused by a strong band bending at the surface of BiSbTeSe2 beneath the ferromagnetic electrode used as a spin detector. This finding paves the way for realizing the spin transistor operation in future topological spintronic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا