ﻻ يوجد ملخص باللغة العربية
Interfaces between two topological insulators are of fundamental interest in condensed matter physics. Inspired by experimental efforts, we study interfacial processes between two slabs of BiSbTeSe2 (BSTS) via first principles calculations. Topological surface states are absent for the BSTS interface at its equilibrium separation, but our calculations show that they appear if the inter-slab distance is greater than 6 Ang. More importantly, we find that topological interface states can be preserved by inserting two or more layers of hexagonal boron nitride between the two BSTS slabs. In experiments, the electric current tunneling through the interface is insensitive to back gate voltage when the bias voltage is small. Using a first-principles based method that allows us to simulate gate field, we show that at low bias the extra charge induced by a gate voltage resides on the surface that is closest to the gate electrode, leaving the interface almost undoped. This provides clues to understand the origin of the observed insensitivity of transport properties to back voltage at low bias. Our study resolves a few questions raised in experiment, which does not yet offer a clear correlation between microscopic physics and transport data. We provide a road map for the design of vertical tunneling junctions involving the interface between two topological insulators.
Thin films of topological insulator Bi_2Se_3 were deposited directly on insulating ferromagnetic EuS. Unusual negative magnetoresistance was observed near the zero field below the Curie temperature (T_C), resembling the weak localization effect; wher
The magnetic proximity effect is a fundamental feature of heterostructures composed of layers of topological insulators and magnetic materials since it underlies many potential applications in devices with novel quantum functionality. Within density
We demonstrate controllable shift of the threshold voltage and the turn-on voltage in pentacene thin film transistors and rubrene single crystal field effect transistors (FET) by the use of nine organosilanes with different functional groups. Prior t
Atomically sharp epitaxial growth of Bi2Se3 films is achieved on Si (111) substrate with MBE (Molecular Beam Epitaxy). Two-step growth process is found to be a key to achieve interfacial-layer-free epitaxial Bi2Se3 films on Si substrates. With a sing
The charge-current-induced spin polarization is a key property of topological insulators for their applications in spintronics. However, topological surface states are expected to give rise to only one type of spin polarization for a given current di