ﻻ يوجد ملخص باللغة العربية
We study the robustness of the paradigmatic kagome Resonating Valence Bond (RVB) spin liquid and its orthogonal version, the quantum dimer model. The non-orthogonality of singlets in the RVB model and the induced finite length scale not only makes it difficult to analyze, but can also significantly affect its physics, such as how much noise resilience it exhibits. Surprisingly, we find that this is not the case: The amount of perturbations which the RVB spin liquid can tolerate is not affected by the finite correlation length, making the dimer model a viable model for studying RVB physics under perturbations. Remarkably, we find that this is a universal phenomenon protected by symmetries: First, the dominant correlations in the RVB are spinon correlations, making the state robust against doping with visons. Second, reflection symmetry stabilizes the spin liquid against doping with spinons, by forbidding mixing of the initially dominant correlations with those which lead to the breakdown of topological order.
We use the topological entanglement entropy (TEE) as an efficient tool to fully characterize the Abelian phase of a $mathbb{Z}_2 times mathbb{Z}_2$ spin liquid emerging as the ground state of topological color code (TCC), which is a class of stabiliz
We introduce the notion of combinatorial gauge symmetry -- a local transformation that includes single spin rotations plus permutations of spins (or swaps of their quantum states) -- that preserve the commutation and anti-commutation relations among
We study the dynamics of a localized spin-1/2 driven by a time-periodic magnetic field that undergoes a topological transition. Despite the strongly non-adiabatic effects dominating the spin dynamics, we find that the fields topology appears clearly
Coulomb spin liquids are topological magnetic states obeying an emergent Gauss law. Little distinction has been made between different kinds of Coulomb liquids. Here we show how a series of distinct Coulomb liquids can be generated straightforwardly
We study the response of critical Resonating Valence Bond (RVB) spin liquids to doping with longer-range singlets, and more generally of U(1)-symmetric tensor networks to non-symmetric perturbations. Using a field theory description, we find that in