ﻻ يوجد ملخص باللغة العربية
For a classical group $G$ over a field $F$ together with a finite-order automorphism $theta$ that acts compatibly on $F$, we describe the fixed point subgroup of $theta$ on $G$ and the eigenspaces of $theta$ on the Lie algebra $mathfrak{g}$ in terms of cyclic quivers with involution. More precise classification is given when $mathfrak{g}$ is a loop Lie algebra, i.e., when $F=mathbb{C}((t))$.
This article establishes some elementary dualities for root systems with automorphisms. We give several applications to reductive groups over nonarchimedean local fields: (1) the proof of a conjecture of Pappas-Rapoport-Smithling characterizing the e
Let G be a complex reductive group acting on a finite-dimensional complex vector space H. Let B be a Borel subgroup of G and let T be the associated torus. The Mumford cone is the polyhedral cone generated by the T-weights of the polynomial functions
This is a survey article for Handbook of Linear Algebra, 2nd ed., Chapman & Hall/CRC, 2014. An informal introduction to representations of quivers and finite dimensional algebras from a linear algebraists point of view is given. The notion of quiver
In arXiv:0810.2076 we presented a conjecture generalizing the Cauchy formula for Macdonald polynomials. This conjecture encodes the mixed Hodge polynomials of the representation varieties of Riemann surfaces with semi-simple conjugacy classes at the
We give some applications of a Hopf algebra constructed from a group acting on another Hopf algebra A as Hopf automorphisms, namely Molnars smash coproduct Hopf algebra. We find connections between the exponent and Frobenius-Schur indicators of a sma