ترغب بنشر مسار تعليمي؟ اضغط هنا

Tracking performance for long-lived particles at LHCb

115   0   0.0 ( 0 )
 نشر من قبل Luis Miguel Garcia Martin
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The LHCb experiment is dedicated to the study of the $c-$ and $b-$hadron decays, including long-lived particles such as $K_s$ and strange baryons ($Lambda^0$, $Xi^-$, etc... ). These kind of particles are difficult to reconstruct by the LHCb tracking system since they escape detection in the first tracker. A new method to evaluate the performance of the different tracking algorithms for long-lived particles using real data samples has been developed. Special emphasis is laid on particles hitting only part of the tracking system of the new LHCb upgrade detector.



قيم البحث

اقرأ أيضاً

A search is performed for heavy long-lived charged particles using 3.0 fb$^{-1}$ of pp collisions collected at $sqrt{s}$= 7 and 8 TeV with the LHCb detector. The search is mainly based on the response of the ring imaging Cherenkovdetectors to disting uish the heavy, slow-moving particles from muons. No evidence is found for the production of such long-lived states. The results are expressed as limits on the Drell-Yan production of pairs of long-lived particles, with both particles in the LHCb pseudorapidity acceptance, $1.8 < eta < 4.9$. The mass-dependent cross-section upper limits are in the range 2-4 fb (at 95% CL) for masses between 124 and 309 GeV/c$^2$.
A search is presented for massive long-lived particles decaying into a muon and two quarks. The dataset consists of proton-proton interactions at centre-of-mass energies of 7 and 8 TeV, corresponding to integrated luminosities of 1 and 2 1/fb, respec tively. The analysis is performed assuming a set of production mechanisms with simple topologies, including the production of a Higgs-like particle decaying into two long-lived particles. The mass range from 20 to 80 GeV and lifetimes from 5 to 100 ps are explored. Results are also interpreted in terms of neutralino production in different supersymmetric models, with masses in the 23-198 GeV range. No excess above the background expectation is observed and upper limits are set on the production cross-section for various points in the parameter space of theoretical models.
Finding tracks downstream of the magnet at the earliest LHCb trigger level is not part of the baseline plan of the upgrade trigger, on account of the significant CPU time required to execute the search. Many long-lived particles, such as $K^0_S$ and strange baryons, decay after the vertex track detector, so that their reconstruction efficiency is limited. We present a study of the performance of a future innovative real-time tracking system based on FPGAs, developed within a R&D effort in the context of the LHCb Upgrade Ib (LHC Run~4), dedicated to the reconstruction of the particles downstream of the magnet in the forward tracking detector (Scintillating Fibre Tracker), that is capable of processing events at the full LHC collision rate of 30 MHz.
We investigate the collider signatures of neutral and charged Long-Lived Particles (LLPs), predicted by the Supersymmetric $B-L$ extension of the Standard Model (BLSSM), at the Large Hadron Collider (LHC). The BLSSM is a natural extension of the Mini mal Supersymmetric Standard Model (MSSM) that can account for non-vanishing neutrino masses. We show that the lightest right-handed sneutrino can be the Lightest Supersymmetric Particle (LSP), while the Next-to-the LSP (NLSP) is either the lightest left-handed sneutrino or the left-handed stau, which are natural candidates for the LLPs. We analyze the displaced vertex signature of the neutral LLP (the lightest left-handed sneutrino), and the charged tracks associated with the charged LLP (the left-handed stau). We show that the production cross sections of our neutral and charged LLPs are relatively large, namely of order ${cal O}(1)~{rm fb}$. Thus, probing these particles at the LHC is quite plausible. In addition, we find that the displaced di-lepton associated with the lightest left-handed sneutrino has a large impact parameter that discriminates it from other SM leptons. We also emphasize that the charged track associated with the left-handed stau has a large momentum with slow moving charged tracks, hence it is distinguished from the SM background and therefore it can be accessible at the LHC.
A search is presented for long-lived particles with a mass between 25 and 50 GeV$/c^2$ and a lifetime between 1 and 200 ps in a sample of proton-proton collisions at a centre-of-mass energy of $sqrt{s}=7$ TeV, corresponding to an integrated luminosit y of 0.62 fb$^{-1}$, collected by the LHCb detector. The particles are assumed to be pair-produced by the decay of a Standard Model-like Higgs boson. The experimental signature of the long-lived particle is a displaced vertex with two associated jets. No excess above the background is observed and limits are set on the production cross-section as a function of the long-lived particle mass and lifetime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا