ﻻ يوجد ملخص باللغة العربية
The LHCb experiment is dedicated to the study of the $c-$ and $b-$hadron decays, including long-lived particles such as $K_s$ and strange baryons ($Lambda^0$, $Xi^-$, etc... ). These kind of particles are difficult to reconstruct by the LHCb tracking system since they escape detection in the first tracker. A new method to evaluate the performance of the different tracking algorithms for long-lived particles using real data samples has been developed. Special emphasis is laid on particles hitting only part of the tracking system of the new LHCb upgrade detector.
A search is performed for heavy long-lived charged particles using 3.0 fb$^{-1}$ of pp collisions collected at $sqrt{s}$= 7 and 8 TeV with the LHCb detector. The search is mainly based on the response of the ring imaging Cherenkovdetectors to disting
A search is presented for massive long-lived particles decaying into a muon and two quarks. The dataset consists of proton-proton interactions at centre-of-mass energies of 7 and 8 TeV, corresponding to integrated luminosities of 1 and 2 1/fb, respec
Finding tracks downstream of the magnet at the earliest LHCb trigger level is not part of the baseline plan of the upgrade trigger, on account of the significant CPU time required to execute the search. Many long-lived particles, such as $K^0_S$ and
We investigate the collider signatures of neutral and charged Long-Lived Particles (LLPs), predicted by the Supersymmetric $B-L$ extension of the Standard Model (BLSSM), at the Large Hadron Collider (LHC). The BLSSM is a natural extension of the Mini
A search is presented for long-lived particles with a mass between 25 and 50 GeV$/c^2$ and a lifetime between 1 and 200 ps in a sample of proton-proton collisions at a centre-of-mass energy of $sqrt{s}=7$ TeV, corresponding to an integrated luminosit