ﻻ يوجد ملخص باللغة العربية
In previous single-pixel imaging systems, the light source was generally idle with respect to time. Here, we propose a novel image fusion and visible watermarking scheme based on Fourier single-pixel imaging (FSPI) with a multiplexed time-varying (TV) signal, which is generated by the watermark pattern hidden in the light source. We call this scheme as TV-FSPI. With TV-FSPI, we can realize high-quality visible image watermarking, encrypted image watermarking and full-color visible image watermarking. We also discuss the extension to invisible watermarking based on TV-FSPI. Furthermore, we dont have to recode illumination patterns, because TV-FSPI can be extended to existing mainstream illumination patterns, such as random illumination mode and Hadamard illumination mode. Thus TV-FSPI has the potential to be used in single-pixel broadcasting system and multi-spectral single-pixel imaging system.
Light field microscopy (LFM) uses a microlens array (MLA) near the sensor plane of a microscope to achieve single-shot 3D imaging of a sample without any moving parts. Unfortunately, the 3D capability of LFM comes with a significant loss of lateral r
Single pixel imaging can reconstruct two-dimensional images of a scene with only a single-pixel detector. It has been widely used for imaging in non-visible bandwidth (e.g., near-infrared and X-ray) where focal-plane array sensors are challenging to
Single-pixel cameras based on the concepts of compressed sensing (CS) leverage the inherent structure of images to retrieve them with far fewer measurements and operate efficiently over a significantly broader spectral range than conventional silicon
The existing segmentation techniques require high-fidelity images as input to perform semantic segmentation. Since the segmentation results contain most of edge information that is much less than the acquired images, the throughput gap leads to both
Single-pixel imaging (SPI) has a major drawback that many sequential illuminations are required for capturing one single image with long acquisition time. Basis illumination patterns such as Fourier patterns and Hadamard patterns can achieve much bet