ترغب بنشر مسار تعليمي؟ اضغط هنا

Altering nodes types in controlling complex networks

81   0   0.0 ( 0 )
 نشر من قبل Xizhe Zhang
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Controlling a complex network towards a desired state is of great importance in many applications. A network can be controlled by inputting suitable external signals into some selected nodes, which are called driver nodes. Previous works found there exist two control modes in dense networks: distributed and centralized modes. For networks with the distributed mode, most of the nodes can be act as driver nodes; and those with the centralized mode, most of the nodes never be the driver nodes. Here we present an efficient algorithm to change the control type of nodes, from input nodes to redundant nodes, which is done by reversing edges of the network. We conclude four possible cases when reversing an edge and show the control mode can be changed by reversing very few in-edges of driver nodes. We evaluate the performance of our algorithm on both synthetic and real networks. The experimental results show that the control mode of a network can be easily changed by reversing a few elaborately selected edges, and the number of possible driver nodes is dramatically decreased. Our methods provide the ability to design the desired control modes of the network for different control scenarios, which may be used in many application regions.



قيم البحث

اقرأ أيضاً

Understanding structural controllability of a complex network requires to identify a Minimum Input nodes Set (MIS) of the network. It has been suggested that finding an MIS is equivalent to computing a maximum matching of the network, where the unmat ched nodes constitute an MIS. However, maximum matching of a network is often not unique, and finding all MISs may provide deep insights to the controllability of the network. Finding all possible input nodes, which form the union of all MISs, is computationally challenging for large networks. Here we present an efficient enumerative algorithm for the problem. The main idea is to modify a maximum matching algorithm to make it efficient for finding all possible input nodes by computing only one MIS. We rigorously proved the correctness of the new algorithm and evaluated its performance on synthetic and large real networks. The experimental results showed that the new algorithm ran several orders of magnitude faster than the existing method on large real networks.
197 - Ye Sun , Long Ma , An Zeng 2015
As an important type of dynamics on complex networks, spreading is widely used to model many real processes such as the epidemic contagion and information propagation. One of the most significant research questions in spreading is to rank the spreadi ng ability of nodes in the network. To this end, substantial effort has been made and a variety of effective methods have been proposed. These methods usually define the spreading ability of a node as the number of finally infected nodes given that the spreading is initialized from the node. However, in many real cases such as advertising and medicine science the spreading only aims to cover a specific group of nodes. Therefore, it is necessary to study the spreading ability of nodes towards localized targets in complex networks. In this paper, we propose a reversed local path algorithm for this problem. Simulation results show that our method outperforms the existing methods in identifying the influential nodes with respect to these localized targets. Moreover, the influential spreaders identified by our method can effectively avoid infecting the non-target nodes in the spreading process.
Interpersonal influence estimation from empirical data is a central challenge in the study of social structures and dynamics. Opinion dynamics theory is a young interdisciplinary science that studies opinion formation in social networks and has a hug e potential in applications, such as marketing, advertisement and recommendations. The term social influence refers to the behavioral change of individuals due to the interactions with others in a social system, e.g. organization, community, or society in general. The advent of the Internet has made a huge volume of data easily available that can be used to measure social influence over large populations. Here, we aim at qualitatively and quantitatively infer social influence from data using a systems and control viewpoint. First, we introduce some definitions and models of opinions dynamics and review some structural constraints of online social networks, based on the notion of sparsity. Then, we review the main approaches to infer the networks structure from a set of observed data. Finally, we present some algorithms that exploit the introduced models and structural constraints, focusing on the sample complexity and computational requirements.
In this paper, we first consider a pinning node selection and control gain co-design problem for complex networks. A necessary and sufficient condition for the synchronization of the pinning controlled networks at a homogeneous state is provided. A q uantitative model is built to describe the pinning costs and to formulate the pinning node selection and control gain design problem for different scenarios into the corresponding optimization problems. Algorithms to solve these problems efficiently are presented. Based on the developed results, we take the existence of a malicious attacker into consideration and a resource allocation model for the defender and the malicious attacker is described. We set up a leader-follower Stackelberg game framework to study the behaviour of both sides and the equilibrium of this security game is investigated. Numerical examples and simulations are presented to demonstrate the main results.
In this paper, we investigate the linear controllability framework for complex networks from a physical point of view. There are three main results. (1) If one applies control signals as determined from the structural controllability theory, there is a high probability that the control energy will diverge. Especially, if a network is deemed controllable using a single driving signal, then most likely the energy will diverge. (2) The energy required for control exhibits a power-law scaling behavior. (3) Applying additional control signals at proper nodes in the network can reduce and optimize the energy cost. We identify the fundamental structures embedded in the network, the longest control chains, which determine the control energy and give rise to the power-scaling behavior. (To our knowledge, this was not reported in any previous work on control of complex networks.) In addition, the issue of control precision is addressed. These results are supported by extensive simulations from model and real networks, physical reasoning, and mathematical analyses. Notes on the submission history of this work: This work started in late 2012. The phenomena of power-law energy scaling and energy divergence with a single controller were discovered in 2013. Strategies to reduce and optimize control energy was articulated and tested in 2013. The senior co-author (YCL) gave talks about these results at several conferences, including the NETSCI 2014 Satellite entitled Controlling Complex Networks on June 2, 2014. The paper was submitted to PNAS in September 2014 and was turned down. It was revised and submitted to PRX in early 2015 and was rejected. After that it was revised and submitted to Nature Communications in May 2015 and again was turned down.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا