ترغب بنشر مسار تعليمي؟ اضغط هنا

Calculated fission-fragment mass yields and average total kinetic energies of heavy and superheavy nuclei

142   0   0.0 ( 0 )
 نشر من قبل Martin Albertsson
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Fission-fragment mass and total-kinetic-energy (TKE) distributions following fission of even-even nuclides in the region $74 leq Z leq 126$ and $92 leq N leq 230$, comprising 896 nuclides have been calculated using the Brownian shape-motion method. The emphasis is the region of superheavy nuclei. To show compatibility with earlier results the calculations are extended to include earlier studied regions. An island of asymmetric fission is obtained in the superheavy region, $106leq Zleq114$ and $162leq Nleq 176$, where the heavy fragment is found to be close to $^{208}$Pb and the light fragment adjusts accordingly. Most experimentally observed $alpha$-decay chains of superheavy nuclei with $Z > 113 $ terminate by spontaneous fission in our predicted region of asymmetric fission. In these cases, the pronounced large asymmetry is accompanied by a low TKE value compatible with measurements.



قيم البحث

اقرأ أيضاً

Potential energy surfaces and fission barriers of superheavy nuclei are analyzed in the macroscopic-microscopic model. The Lublin-Strasbourg Drop (LSD) is used to obtain the macroscopic part of the energy, whereas the shell and pairing energy correct ions are evaluated using the Yukawa-folded potential. A standard flooding technique has been used to determine the barrier heights. It was shown the Fourier shape parametrization containing only three deformation parameters reproduces well the nuclear shapes of nuclei on their way to fission. In addition, the non-axial degree of freedom is taken into account to describe better the form of nuclei around the ground state and in the saddles region. Apart from the symmetric fission valley, a new very asymmetric fission mode is predicted in most superheavy nuclei. The fission fragment mass distributions of considered nuclei are obtained by solving the 3D Langevin equations.
The fission-fragment mass and total kinetic energy (TKE) distributions are evaluated in a quantum mechanical framework using elongation, mass asymmetry, neck degree of freedom as the relevant collective parameters in the Fourier shape parametrization recently developed by us. The potential energy surfaces (PES) are calculated within the macroscopic-microscopic model based on the Lublin-Strasbourg Drop (LSD), the Yukawa-folded (YF) single-particle potential and a monopole pairing force. The PES are presented and analysed in detail for even-even Plutonium isotopes with $A=236 -246$. They reveal deep asymmetric valleys. The fission-fragment mass and TKE distributions are obtained from the ground state of a collective Hamiltonian computed within the Born-Oppenheimer approximation, in the WKB approach by introducing a neck-dependent fission probability. The calculated mass and total kinetic energydistributions are found in good agreement with the data.
103 - A. Mamdouh 2000
Using the ETFSI (extended Thomas-Fermi plus Strutinsky integral) method, we have calculated the fission barriers of nearly 2000 exotic nuclei, including all the neutron-rich nuclei up to A=318 that are expected to be relevant to the r-process, and al l the superheavy nuclei in the vicinity of N=184, with Z<=120. Our calculations were performed with the Skyrme force SkSC4, which was determined in the ETFSI-1 mass fit. For proton-deficient nuclei in the region of N=184 we find the barriers to be much higher than previously believed, which suggests that the r-process path might continue to mass numbers well beyond 300. For the superheavy nuclei we typically find barrier heights of 6-7 MeV.
Fusion-fission dynamics is investigated with a special emphasis on fusion reactions at low energy for which shell effects and pairing correlations can play a crucial role leading in particular to multi-modal fission. To follow the dynamical evolution of an excited and rotating nucleus we solve a 2-dimensional Langevin equation taking explicitly light-particle evaporation into account. The confrontation theory-experiment is demonstrated to give interesting information on the model presented, its qualities as well as its shortcomings.
$textbf{Background}$ More than half of all the elements heavier than iron are made by the rapid neutron capture process (or r process). For very neutron-rich astrophysical conditions, such at those found in the tidal ejecta of neutron stars, nuclear fission determines the r-process endpoint, and the fission fragment yields shape the final abundances of $110le A le 170$ nuclei. The knowledge of fission fragment yields of hundreds of nuclei inhabiting very neutron-rich regions of the nuclear landscape is thus crucial for the modeling of heavy-element nucleosynthesis. $textbf{Purpose}$ In this study, we propose a model for the fast calculation of fission fragment yields based on the concept of shell-stabilized prefragments defined with help of the nucleonic localization functions. $textbf{Methods}$ To generate realistic potential energy surfaces and nucleonic localizations, we apply Skyrme Density Functional Theory. The distribution of the neck nucleons among the two prefragments is obtained by means of a statistical model. $textbf{Results}$ We benchmark the method by studying the fission yields of $^{178}$Pt, $^{240}$Pu, $^{254}$Cf, and $^{254,256,258}$Fm and show that it satisfactorily explains the experimental data. We then make predictions for $^{254}$Pu and $^{290}$Fm as two representative cases of fissioning nuclei that are expected to significantly contribute during the r-process nucleosynthesis occurring in neutron star mergers. $textbf{Conclusions}$ The proposed framework provides an efficient alternative to microscopic approaches based on the evolution of the system in a space of collective coordinates all the way to scission. It can be used to carry out global calculations of fission fragment distributions across the r-process region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا