ﻻ يوجد ملخص باللغة العربية
The most luminous quasars at high redshift harbour the fastest-growing and most massive black holes in the early Universe. They are exceedingly rare and hard to find. Here, we present our search for the most luminous quasars in the redshift range from $z=4.5$ to $5$ using data from SkyMapper, Gaia and WISE. We use colours to select likely high-redshift quasars and reduce the stellar contamination of the candidate set with parallax and proper motion data. In $sim$12,500~deg$^2$ of Southern sky, we find 92 candidates brighter than $R_p=18.2$. Spectroscopic follow-up has revealed 21 quasars at $zge 4$ (16 of which are within $z=[4.5,5]$), as well as several red quasars, BAL quasars and objects with unusual spectra, which we tentatively label OFeLoBALQSOs at redshifts of $zapprox 1$ to $2$. This work lifts the number of known bright $zge 4.5$ quasars in the Southern hemisphere from 10 to 26 and brings the total number of quasars known at $R_p<18.2$ and $zge 4.5$ to 42.
We search for ultra-luminous QSOs at high redshift using photometry from the SkyMapper Southern Survey DR3, in combination with 2MASS, VHS DR6, VIKING DR5, AllWISE, and CatWISE2020, as well as parallaxes and proper motions from Gaia DR2 and eDR3. We
Significant clustering around the rarest luminous quasars is a feature predicted by dark matter theory combined with number density matching arguments. However, this expectation is not reflected by observations of quasars residing in a diverse range
We present Reverberation Mapping (RM) results for 17 high-redshift, high-luminosity quasars with good quality R-band and emission line light curves. We are able to measure statistically significant lags for Ly_alpha (11 objects), SiIV (5 objects), CI
We investigate the relation between star formation rates ($dot{M}_{s}$) and AGN properties in optically selected type 1 quasars at $2<z<3$ using data from Herschel and the SDSS. We find that $dot{rm{M}}_s$ remains approximately constant with redshift
We perform a systematic study of outflow in the narrow-line region (NLR) of active galactic nuclei (AGNs) at $zsim0.4-0.8$ basing upon a large sample of $sim900$ quasars at $zsim 0.4-0.8$. The sample is extracted from the Sloan Digital Sky Survey by