ﻻ يوجد ملخص باللغة العربية
Space and time are crucial twins in physics. In quantum mechanics, spatial correlations already reveal nonclassical features, such as entanglement, and have bred many quantum technologies. However, the nature of quantum temporal correlations still remains in vague. In this Letter, based on the entangled-history formalism, we prove rigorously that temporal correlations are equivalent to spatial correlations. The effect of temporal correlations corresponds to a quantum channel. The resulting quantifications and classifications of quantum temporal correlations are illustrated in a natural way. Our proposed procedures also show how to determine temporal correlations completely.
The correlations arising from sequential measurements on a single quantum system form a polytope. This is defined by the arrow-of-time (AoT) constraints, meaning that future choices of measurement settings cannot influence past outcomes. We discuss t
A possible notion of nonclassicality for single systems can be defined on the basis of the notion of memory cost of classically simulating probabilities observed in a temporal sequence of measurements. We further explore this idea in a theory-indepen
Einstein-Podolsky-Rosen (EPR) steering is an intermediate quantum correlation that lies in between entanglement and Bell non-locality. Its temporal analogue, temporal steering, has recently been shown to have applications in quantum information and o
Markovianity lies at the heart of classical communication problems. This in turn makes the information-theoretic characterization of Markovian processes worthwhile. Data processing inequalities are ubiquitous in this sense, assigning necessary condit
This paper is written as a brief introduction for beginning graduate students. The picture of electron waves moving in a cristalline potential and interacting weakly with each other and with cristalline vibrations suffices to explain the properties o