ترغب بنشر مسار تعليمي؟ اضغط هنا

An X-ray Detection of Star Formation In a Highly Magnified Giant Arc

383   0   0.0 ( 0 )
 نشر من قبل Matthew Bayliss
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. B. Bayliss




اسأل ChatGPT حول البحث

In the past decade, our understanding of how stars and galaxies formed during the first 5 billion years after the Big Bang has been revolutionized by observations that leverage gravitational lensing by intervening masses, which act as natural cosmic telescopes to magnify background sources. Previous studies have harnessed this effect to probe the distant universe at ultraviolet, optical, infrared and millimeter wavelengths. However, strong lensing studies of young, star-forming galaxies have never extended into X-ray wavelengths, which uniquely trace high-energy phenomena. Here we report an X-ray detection of star formation in a highly magnified, strongly lensed galaxy. This lensed galaxy, seen during the first third of the history of the Universe, is a low--mass, low--metallicity starburst with elevated X-ray emission, and is a likely analog to the first generation of galaxies. Our measurements yield insight into the role that X-ray emission from stellar populations in the first generation of galaxies may play in re-ionizing the Universe. This observation paves the way for future strong lensing-assisted X-ray studies of distant galaxies reaching orders of magnitude below the detection limits of current deep fields, and previews the depths that will be attainable with future X-ray observatories.



قيم البحث

اقرأ أيضاً

133 - Qiang Yuan 2015
Daily X-ray flaring represents an enigmatic phenomenon of Sgr A$^{star}$ --- the supermassive black hole at the center of our Galaxy. We report initial results from a systematic X-ray study of this phenomenon, based on extensive {it Chandra} observat ions obtained from 1999 to 2012, totaling about 4.5 Ms. We detect flares, using a combination of the maximum likelihood and Markov Chain Monte Carlo methods, which allow for a direct accounting for the pile-up effect in the modeling of the flare lightcurves and an optimal use of the data, as well as the measurements of flare parameters, including their uncertainties. A total of 82 flares are detected. About one third of them are relatively faint, which were not detected previously. The observation-to-observation variation of the quiescent emission has an average root-mean-square of $6%-14%$, including the Poisson statistical fluctuation of faint flares below our detection limits. We find no significant long-term variation in the quiescent emission and the flare rate over the 14 years. In particular, we see no evidence of changing quiescent emission and flare rate around the pericenter passage of the S2 star around 2002. We show clear evidence of a short-term clustering for the ACIS-S/HETG 0th-order flares on time scale of $20-70$ ks. We further conduct detailed simulations to characterize the detection incompleteness and bias, which is critical to a comprehensive follow-up statistical analysis of flare properties. These studies together will help to establish Sgr A$^{star}$ as a unique laboratory to understand the astrophysics of prevailing low-luminosity black holes in the Universe.
We report the discovery ($20sigma$) of kilohertz quasi-periodic oscillations (kHz QPOs) at ~ 690 Hz from the transient neutron star low-mass X-ray binary EXO 1745-248. We find that this is a lower kHz QPO, and systematically study the time variation of its properties using smaller data segments with and without the shift-and-add technique. The quality (Q) factor occasionally significantly varies within short ranges of frequency and time. A high Q-factor (264.5 +- 38.5) of the QPO is found for a 200 s time segment, which might be the largest value reported in the literature. We argue that an effective way to rule out kHz QPO models is to observationally find such high Q-factors, even for a short duration, as many models cannot explain a high coherence. However, as we demonstrate, the shift-and-add technique cannot find a very high Q-factor which appears for a short period of time. This shows that the coherences of kHz QPOs can be higher than the already high values reported using this technique, implying further constraints on models. We also discuss the energy dependence of fractional rms amplitude and Q-factor of the kHz QPO.
A unique signature for the presence of massive black holes in very dense stellar regions is occasional giant-amplitude outbursts of multiwavelength radiation from tidal disruption and subsequent accretion of stars that make a close approach to the bl ack holes. Previous strong tidal disruption event (TDE) candidates were all associated with the centers of largely isolated galaxies. Here we report the discovery of a luminous X-ray outburst from a massive star cluster at a projected distance of 12.5 kpc from the center of a large lenticular galaxy. The luminosity peaked at ~10^{43} erg/s and decayed systematically over 10 years, approximately following a trend that supports the identification of the event as a TDE. The X-ray spectra were all very soft, with emission confined to be <3.0 keV, and could be described with a standard thermal disk. The disk cooled significantly as the luminosity decreased, a key thermal-state signature often observed in accreting stellar-mass black holes. This thermal-state signature, coupled with very high luminosities, ultrasoft X-ray spectra and the characteristic power-law evolution of the light curve, provides strong evidence that the source contains an intermediate-mass black hole (IMBH) with a mass of a few ten thousand solar mass. This event demonstrates that one of the most effective means to detect IMBHs is through X-ray flares from TDEs in star clusters.
181 - Patrick L. Kelly 2014
In 1964, Refsdal hypothesized that a supernova whose light traversed multiple paths around a strong gravitational lens could be used to measure the rate of cosmic expansion. We report the discovery of such a system. In Hubble Space Telescope imaging, we have found four images of a single supernova forming an Einstein cross configuration around a redshift z=0.54 elliptical galaxy in the MACS J1149.6+2223 cluster. The clusters gravitational potential also creates multiple images of the z=1.49 spiral supernova host galaxy, and a future appearance of the supernova elsewhere in the cluster field is expected. The magnifications and staggered arrivals of the supernova images probe the cosmic expansion rate, as well as the distribution of matter in the galaxy and cluster lenses.
We present mid-infrared (IR) light curves of the Ultraluminous X-ray Source (ULX) Holmberg II X-1 from observations taken between 2014 January 13 and 2017 January 5 with the textit{Spitzer Space Telescope} at 3.6 and 4.5 $mu$m in the textit{Spitzer} Infrared Intensive Transients Survey (SPIRITS). The mid-IR light curves, which reveal the first detection of mid-IR variability from a ULX, is determined to arise primarily from dust emission rather than from a jet or an accretion disk outflow. We derived the evolution of the dust temperature ($T_mathrm{d}sim600 - 800$ K), IR luminosity ($L_mathrm{IR}sim3times10^4$ $mathrm{L}_odot$), mass ($M_mathrm{d}sim1-3times10^{-6}$ $mathrm{M}_odot$), and equilibrium temperature radius ($R_mathrm{eq}sim10-20$ AU). A comparison of X-1 with a sample spectroscopically identified massive stars in the Large Magellanic Cloud on a mid-IR color-magnitude diagram suggests that the mass donor in X-1 is a supergiant (sg) B[e]-star. The sgB[e]-interpretation is consistent with the derived dust properties and the presence of the [Fe II] ($lambda=1.644$ $mu$m) emission line revealed from previous near-IR studies of X-1. We attribute the mid-IR variability of X-1 to increased heating of dust located in a circumbinary torus. It is unclear what physical processes are responsible for the increased dust heating; however, it does not appear to be associated with the X-ray flux from the ULX given the constant X-ray luminosities provided by serendipitous, near-contemporaneous X-ray observations around the first mid-IR variability event in 2014. Our results highlight the importance of mid-IR observations of luminous X-ray sources traditionally studied at X-ray and radio wavelengths.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا