ﻻ يوجد ملخص باللغة العربية
Among Wolf-Rayet stars, those of subtype WN8 are the intrinsically most variable. We have explored the long-term photometric variability of the brightest known WN8 star, WR 40, through four contiguous months of time-resolved, single-passband optical photometry with the BRIght Target Explorer (BRITE) nanosatellite mission. The Fourier transform of the observed light-curve reveals that the strong light variability exhibited by WR 40 is dominated by many randomly-triggered, transient, low-frequency signals. We establish a model in which the whole wind consists of stochastic clumps following an outflow visibility promptly rising to peak brightness upon clump emergence from the optically thick pseudo-photosphere in the wind, followed by a gradual decay according to the right-half of a Gaussian. Free electrons in each clump scatter continuum light from the star. We explore a scenario where the clump size follows a power-law distribution, and another one with an ensemble of clumps of constant size. Both scenarios yield simulated light curves morphologically resembling the observed light curve remarkably well, indicating that one cannot uniquely constrain the details of clump size distribution with only a photometric light curve. Nevertheless, independent evidence favours a negative-index power law, as seen in many other astrophysical turbulent media.
Observations of the WC9+OB system WR 65 in the infrared show variations of its dust emission consistent with a period near 4.8~yr, suggesting formation in a colliding-wind binary (CWB) having an elliptical orbit. If we adopt the IR maximum as zero ph
The BTr and UBr satellites observed $beta$ Lyrae from May to October 2016 to continuously monitor light-curve instabilities with the time resolution of about 100 mins. An instrumental problem affecting localized patches on the BTr CCD detector has be
We study the circumstellar environment of the M-type AGB star RT Vir using mid-infrared high spatial resolution observations from the ESO-VLTI focal instrument MIDI. The aim of this study is to provide observational constraints on theoretical predict
We present results from a global view on the colliding-wind binary WR 147. We analysed new optical spectra of WR 147 obtained with Gran Telescopio CANARIAS and archive spectra from the Hubble Space Telescope by making use of modern atmosphere models
We present spectroscopy of the P~Cygni profile of the 1.083-micron He I line in the WC7 + O5 colliding-wind binary (CWB) WR 140 (HD 193793), observed in 2008, before its periastron passage in 2009, and in 2016-17, spanning the subsequent periastron p