ترغب بنشر مسار تعليمي؟ اضغط هنا

The VMC Survey -- XXXV. Model fitting of LMC Cepheid light curves

70   0   0.0 ( 0 )
 نشر من قبل Roberto Molinaro Mr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of the light curve model fitting technique applied to optical and near-infrared photometric data for a sample of 18 Classical Cepheids (11 fundamentals and 7 first overtones) in the Large Magellanic Cloud (LMC). We use optical photometry from the OGLE III database and near--infrared photometry obtained by the European Southern bservatory public survey VISTA near--infrared survey of the Magellanic Clouds system. Iso--periodic nonlinear convective model sequences have been computed for each selected Cepheid in order to reproduce the multi--filter light curve amplitudes and shape details. The inferred individual distances provide an intrinsic weighted mean value for the LMC distance modulus of $mu_0=18.56$ mag with a standard deviation of 0.13 mag. We derive also the Period--Radius, the Period--Luminosity and the Period--Wesenheit relations that are consistent with similar relations in the literature. The intrinsic masses and luminosities of the best--fitting models show that all the investigated pulsators are brighter than the redictions of the canonical evolutionary mass--luminosity relation, suggesting a significant efficiency of non--canonical phenomena, such as overshooting, mass loss and/or rotation.



قيم البحث

اقرأ أيضاً

We present the results of the chi2 minimization model fitting technique applied to optical and near-infrared photometric and radial velocity data for a sample of 9 fundamental and 3 first overtone classical Cepheids in the Small Magellanic Cloud (SMC ). The near- infrared photometry (JK filters) was obtained by the European Southern Observatory (ESO) public survey VISTA near-infrared Y; J;Ks survey of the Magellanic Clouds system(VMC). For each pulsator isoperiodic model sequences have been computed by adopting a nonlinear convective hydrodynamical code in order to reproduce the multi- filter light and (when available) radial velocity curve amplitudes and morphological details. The inferred individual distances provide an intrinsic mean value for the SMC distance modulus of 19.01 mag and a standard deviation of 0.08 mag, in agreement with the literature. Moreover the instrinsic masses and luminosities of the best fitting model show that all these pulsators are brighter than the canonical evolutionary Mass- Luminosity relation (MLR), suggesting a significant efficiency of core overshooting and/or mass loss. Assuming that the inferred deviation from the canonical MLR is only due to mass loss, we derive the expected distribution of percentage mass loss as a function of both the pulsation period and of the canonical stellar mass. Finally, a good agreement is found between the predicted mean radii and current Period-Radius (PR) relations in the SMC available in the literature. The results of this investigation support the predictive capabilities of the adopted theoretical scenario and pave the way to the application to other extensive databases at various chemical compositions, including the VMC Large Magellanic Cloud pulsators and Galactic Cepheids with Gaia parallaxes.
We present new accurate Period-Luminosity (PL) and Period-Wesenheit (PW) relations in the V,J,Ks bands based on a sample of more than 4500 Cepheids in the Large Magellanic Cloud (LMC) whose photometry was obtained in the context of the VISTA Magellan ic Clouds (VMC) Survey. The excellent precision of these data allows us to study the geometry of the LMC and to establish a solid baseline for extra-galactic distance scale studies. To calibrate the zero points of these PL/PW relations, we adopted Gaia Data Release 2 parallaxes for more than 2000 Milky Way Cepheids. The implications for the measurement of $H_0$ are briefly discussed.
115 - S. Rubele , L. Kerber , L. Girardi 2011
We derive the star formation history for several regions of the LMC, using deep near-infrared data from the VISTA near-infrared YJKs survey of the Magellanic system (VMC). The regions include three almost-complete 1.4 sqdeg tiles located 3.5 deg away from the LMC centre in distinct directions. To this dataset, we add two 0.036 sqdeg subregions inside the 30 Doradus tile. The SFH is derived from the simultaneous reconstruction of two different CMDs, using the minimization code StarFISH. The distance modulus (m-M)_0 and extinction Av is varied within intervals 0.2 and 0.5 mag wide, respectively, within which we identify the best-fitting star formation rate SFR(t), age-metallicity relation (AMR), (m-M)_0 and Av. Our results demonstrate that VMC data, due to the combination of depth and little sensitivity to differential reddening, allow the derivation of the space-resolved SFH of the LMC with unprecedented quality compared to previous wide-area surveys. In particular, the data clearly reveal the presence of peaks in the SFR(t) at ages log(t/yr)=9.3 and 9.7, which appear in most of the subregions. The most recent SFR is found to vary greatly from subregion to subregion, with the general trend of being more intense in the innermost LMC, except for the tile next to the N11 complex. In the bar region, the SFR seems remarkably constant over the time interval from 8.4 to 9.7. The AMRs, instead, turn out to be remarkably similar across the LMC. The fields studied so far are fit extremely well by a single disk of inclination 26.2+-2.0 deg, position angle of the line of nodes 129.1+-13.0 deg, and distance modulus of 18.470+-0.006 mag (random errors only) up to the LMC centre.
198 - M. Marconi , R. Molinaro , G. Bono 2013
We performed a new and accurate fit of light and radial velocity curves of the Large Magellanic Cloud (LMC) Cepheid --OGLE-LMC-CEP-0227-- belonging to a detached double-lined eclipsing binary system. We computed several sets of nonlinear, convective models covering a broad range in stellar mass, effective temperature and in chemical composition. The comparison between theory and observations indicates that current theoretical framework accounts for luminosity --V and I band-- and radial velocity variations over the entire pulsation cycle. Predicted pulsation mass --M=4.14+-0.06 Mo-- and mean effective temperature --Te=6100+-50 K-- do agree with observed estimates with an accuracy better than 1 sigma. The same outcome applies, on average, to the luminosity amplitudes and to the mean radius. We find that the best fit solution requires a chemical composition that is more metal--poor than typical LMC Cepheids (Z=0.004 vs 0.008) and slightly helium enhanced (Y=0.27 vs 0.25), but the sensitivity to He abundance is quite limited. Finally, the best fit model reddening --E(V-I)=0.171+-0.015 mag-- and the true distance modulus corrected for the barycenter of the LMC --mu_{0,LMC}=18.50+-0.02+-0.10 (syst) mag--, agree quite well with similar estimates in the recent literature.
We present results from the Large Magellanic Cloud Near-infrared Synoptic Survey (LMCNISS) for classical and type II Cepheid variables that were identified by the Optical Gravitational Lensing Experiment (OGLE-III) catalogue. Multiwavelength time-ser ies data for classical Cepheid variables are used to study light-curve structures as a function of period and wavelength. We exploit a sample of $sim$1400 classical and $sim$80 type II Cepheid variables to derive Period--Wesenheit relations that combine both optical and near-infrared data. The new Period--Luminosity and Wesenheit relations are used to estimate distances to several Local Group galaxies (using classical Cepheids) and to Galactic globular clusters (using type II Cepheids). By appealing to a statistical framework, we find that fundamental-mode classical Cepheid Period--Luminosity relations are non-linear around 10--18 days at optical and near-IR wavelengths. We also suggest that a non-linear relation provides a better constraint on the Cepheid Period--Luminosity relation in type Ia Supernovae host galaxies, though it has a negligible effect on the systematic uncertainties affecting the local measurement of the Hubble constant.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا