ﻻ يوجد ملخص باللغة العربية
Privacy amplification (PA) is the art of distilling a highly secret key from a partially secure string by public discussion. It is a vital procedure in quantum key distribution (QKD) to produce a theoretically unconditional secure key. The throughput of PA has become a bottleneck of the high-speed discrete variable QKD (DV-QKD) system. In this paper, a high-speed modular arithmetic hash PA scheme with GNU multiple precision (GMP) arithmetic library is presented. This scheme is implemented on two different central processing unit (CPU) platforms. The experimental results demon-strate that the throughput of this scheme achieves 260Mbps on the block size of 10^6 and 140Mbps on the block size of 10^8. This is the highest-speed recorded PA scheme on CPU platform to the authors knowledge.
The FPGA-based Quantum key distribution (QKD) system is an important trend of QKD systems. It has several advantages, real time, low power consumption and high integration density. Privacy amplification is an essential part in a QKD system to ensure
Privacy amplification (PA) is an essential part in a quantum key distribution (QKD) system, distilling a highly secure key from a partially secure string by public negotiation between two parties. The optimization objectives of privacy amplification
We study information theoretical security for space links between a satellite and a ground-station. Quantum key distribution (QKD) is a well established method for information theoretical secure communication, giving the eavesdropper unlimited access
Digital signatures are widely used for providing security of communications. At the same time, the security of currently deployed digital signature protocols is based on unproven computational assumptions. An efficient way to ensure an unconditional
We propose a schematic setup of quantum key distribution (QKD) with an improved secret key rate based on high-dimensional quantum states. Two degrees-of-freedom of a single photon, orbital angular momentum modes, and multi-path modes, are used to enc