ترغب بنشر مسار تعليمي؟ اضغط هنا

Polarimetric and Photometric Observations of NEAs; (422699) 2000 PD3 and (3200) Phaethon with the 1.6m Pirka Telescope

155   0   0.0 ( 0 )
 نشر من قبل Ryo Okazaki
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on optical polarimetric observations of two Apollo type near-Earth asteroids, (422699) 2000 PD3 and (3200) Phaethon, and BVRI photometric observations of 2000 PD3 using the 1.6m Pirka telescope in 2017. We derived the geometric albedo of pv = 0.22 +- 0.06 and the color indices (B-V = 0.282 +- 0.072, V-R = 0.198 +- 0.035 and V-I = 0.203 +- 0.022) for 2000 PD3 which are consistent with those of S-type asteroids (including Q-types). The effective diameter of 2000 PD3 was derived as 0.69 +- 0.15 km using our derived geometric albedo. We found that our polarimetric data of Phaethon in 2017 is deviated from the polarimetric profile taken at different epoch of 2016 using the identical instrument setting (Ito et al., 2018). This result suggests that Phaethon would have a regional heterogeneity in grain size and/or albedo on its surface.

قيم البحث

اقرأ أيضاً

The polarimetric observations of asteroid 3200 Phaethon, the target of international observation campaign, did not cover a proper phase angle interval to provide estimating all the attributes of the asteroid polarization curve. Based on present discr ete observation data for Phaethon, its full polarimetric curves in BVRI bandpasses were reproduced. The polarimetric properties of the asteroid correspond to a notion on surface structure as thermally altered regolith particles mixed with lager rock fragments like a coarse pebble.
We present Hubble Space Telescope observations of the active asteroid (and Geminid stream parent) 3200 Phaethon when at its closest approach to Earth (separation 0.07 AU) in 2017 December. Images were recorded within $sim$1degr~of the orbital plane, providing extra sensitivity to low surface brightness caused by scattering from a large-particle trail. We placed an upper limit to the apparent surface brightness of such a trail at 27.2 magnitudes arcsecond$^{-2}$, corresponding to an in-plane optical depth $le 3times10^{-9}$. No co-moving sources brighter than absolute magnitude 26.3, corresponding to circular equivalent radius $sim$12 m (albedo 0.12 assumed), were detected. Phaethon is too hot for near-surface ice to survive. We briefly consider the thermodynamic stability of deeply-buried ice, finding that its survival would require either a very small (regolith-like) thermal diffusivity ($< 10^{-8}$ m$^2$ s$^{-1}$), or the unexpectedly recent injection of Phaethon (timescale $lesssim$ 10$^6$ yr) into its present orbit, or both.
The near-Earth asteroid 3200 Phaethon (1983 TB) is an attractive object not only from a scientific viewpoint but also because of JAXAs DESTINY+ target. The rotational lightcurve and spin properties were investigated based on the data obtained in the ground-based observation campaign of Phaethon. We aim to refine the lightcurves and shape model of Phaethon using all available lightcurve datasets obtained via optical observation, as well as our time-series observation data from the 2017 apparition. Using eight 1-2-m telescopes and an optical imager, we acquired the optical lightcurves and derived the spin parameters of Phaethon. We applied the lightcurve inversion method and SAGE algorithm to deduce the convex and non-convex shape model and pole orientations. We analysed the optical lightcurve of Phaethon and derived a synodic and a sidereal rotational period of 3.6039 h, with an axis ratio of a/b = 1.07. The ecliptic longitude (lambda) and latitude (beta) of the pole orientation were determined as (308, -52) and (322, -40) via two independent methods. A non-convex model from the SAGE method, which exhibits a concavity feature, is also presented.
A multi-colour phase-polarization curve of asteroid (3200)~Phaethon has been obtained during the December 2017 apparition by merging measurements taken at the observing station of Calern (France) and at the Rhozen observatory (Bulgaria). All the obse rvations were obtained in the positive polarization branch, the phase angle ranging from 36$^circ$ to 116$^circ$. The measured values of linear polarization are among the highest ever observed for a Solar system body. The covered interval of phase angle was not sufficiently extended to derive a firm determination of the $P_{rm max}$ parameter, but this appears to occur at a phase angle around 130$^circ$ and reaches more than 45% of linear polarization. Phaethon is the parent body of the Geminid meteor shower, and the real physical nature of this object (asteroid or comet) has been a long-debated subject. Our polarimetric measurements seem to support the asteroid hypothesis with a phase-polarization curve similar to the asteroid (2)~Pallas, but further observations at smaller phase angles are needed to draw definitive conclusions.
We present the identification and preliminary analysis of a dust trail following the orbit of (3200) Phaethon as seen in white light images recorded by the Wide-field Imager for Parker Solar Probe (WISPR) instrument on the NASA Parker Solar Probe (PS P) mission. During PSPs first solar encounter in November 2018, a dust trail following Phaethons orbit was visible for several days and crossing two fields of view. Preliminary analyses indicate this trail to have a visual magnitude of 15.8 $pm$0.3 per pixel and a surface brightness of 25.0 mag arcsec$^{-2}$ as seen by PSP/WISPR from a distance of $sim$0.2 au from the trail. We estimate the total mass of the stream to be $sim(0.4-1.3){times}10^{12}$ kg, which is consistent with, though slightly underestimates, the assumed mass of the Geminid stream but is far larger than the current dust production of Phaethon could support. Our results imply that we are observing a natural clustering of at least some portion of the Geminid meteor stream through its perihelion, as opposed to dust produced more recently from perihelion activity of Phaethon.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا