ﻻ يوجد ملخص باللغة العربية
Quantum walks are versatile simulators of topological phases and phase transitions as observed in condensed matter physics. Here, we utilize a step dependent coin in quantum walks and investigate what topological phases we can simulate with it, their topological invariants, bound states and possibility of phase transitions. These quantum walks simulate non-trivial phases characterized by topological invariants (winding number) $pm 1$ which are similar to the ones observed in topological insulators and polyacetylene. We confirm that the number of phases and their corresponding bound states increase step dependently. In contrast, the size of topological phase and distance between two bound states are decreasing functions of steps resulting into formation of multiple phases as quantum walks proceed (multiphase configuration). We show that, in the bound states, the winding number and group velocity are ill-defined, and the second moment of the probability density distribution in position space undergoes an abrupt change. Therefore, there are phase transitions taking place over the bound states and between two topological phases with different winding numbers.
We report on the possibility of controlling quantum random walks with a step-dependent coin. The coin is characterized by a (single) rotation angle. Considering different rotation angles, one can find diverse probability distributions for this walk i
In this paper we unveil some features of a discrete-time quantum walk on the line whose coin depends on the temporal variable. After considering the most general form of the unitary coin operator, we focus on the role played by the two phase factors
We provide an explanation of recent experimental results of Xue et al., where full revivals in a time-dependent quantum walk model with a periodically changing coin are found. Using methods originally developed for electric walks with a space-depende
The control of quantum walk is made particularly transparent when the initial state is expressed in terms of the eigenstates of the coin operator. We show that the group-velocity density acquires a much simpler form when expressed in this basis. This
Although quantum walks exhibit peculiar properties that distinguish them from random walks, classical behavior can be recovered in the asymptotic limit by destroying the coherence of the pure state associated to the quantum system. Here I show that t