ترغب بنشر مسار تعليمي؟ اضغط هنا

Understanding the Discrepancy between IRX and Balmer Decrement in Tracing Galaxy Dust Attenuation

254   0   0.0 ( 0 )
 نشر من قبل Jianbo Qin
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jianbo Qin




اسأل ChatGPT حول البحث

We compare the infrared excess (IRX) and Balmer decrement (${rm Halpha/Hbeta }$) as dust attenuation indicators in relation to other galaxy parameters using a sample of $sim$32 000 local star-forming galaxies (SFGs) carefully selected from SDSS, GALEX and WISE. While at fixed ${rm Halpha/Hbeta }$, IRX turns out to be independent on galaxy stellar mass, the Balmer decrement does show a strong mass dependence at fixed IRX. We find the discrepancy, parameterized by the color excess ratio $R_{rm EBV} equiv E(B-V)_{rm IRX}/E(B-V)_{rm Halpha/Hbeta }$, is not dependent on the gas-phase metallicity and axial ratio but on the specific star formation rate (SSFR) and galaxy size ($R_{rm e}$) following $R_{rm EBV}=0.79+0.15log({rm SSFR}/R_{rm e}^{2})$. This finding reveals that the nebular attenuation as probed by the Balmer decrement becomes increasingly larger than the global (stellar) attenuation of SFGs with decreasing SSFR surface density. This can be understood in the context of an enhanced fraction of intermediate-age stellar populations that are less attenuated by dust than the HII region-traced young population, in conjunction with a decreasing dust opacity of the diffuse ISM when spreading over a larger spatial extent. Once the SSFR surface density of an SFG is known, the conversion between attenuation of nebular and stellar emission can be well estimated using our scaling relation.

قيم البحث

اقرأ أيضاً

We utilise a series of high-resolution cosmological zoom simulations of galaxy formation to investigate the relationship between the ultraviolet (UV) slope, beta, and the ratio of the infrared luminosity to UV luminosity (IRX) in the spectral energy distributions (SEDs) of galaxies. We employ dust radiative transfer calculations in which the SEDs of the stars in galaxies propagate through the dusty interstellar medium. Our main goals are to understand the origin of, and scatter in the IRX-beta relation; to assess the efficacy of simplified stellar population synthesis screen models in capturing the essential physics in the IRX-beta relation; and to understand systematic deviations from the canonical local IRX-beta relations in particular populations of high-redshift galaxies. Our main results follow. Galaxies that have young stellar populations with relatively cospatial UV and IR emitting regions and a Milky Way-like extinction curve fall on or near the standard Meurer relation. This behaviour is well captured by simplified screen models. Scatter in the IRX-beta relation is dominated by three major effects: (i) older stellar populations drive galaxies below the relations defined for local starbursts due to a reddening of their intrinsic UV SEDs; (ii) complex geometries in high-z heavily star forming galaxies drive galaxies toward blue UV slopes owing to optically thin UV sightlines; (iii) shallow extinction curves drive galaxies downward in the IRX-beta plane due to lowered NUV/FUV extinction ratios. We use these features of the UV slopes of galaxies to derive a fitting relation that reasonably collapses the scatter back toward the canonical local relation. Finally, we use these results to develop an understanding for the location of two particularly enigmatic populations of galaxies in the IRX-beta plane: z~2-4 dusty star forming galaxies, and z>5 star forming galaxies.
We use a sample of star-forming field and protocluster galaxies at z=2.0-2.5 with Keck/MOSFIRE K-band spectra, a wealth of rest-frame UV photometry, and Spitzer/MIPS and Herschel/PACS observations, to dissect the relation between the ratio of IR to U V luminosity (IRX) versus UV slope ($beta$) as a function of gas-phase metallicity (12+log(O/H)~8.2-8.7). We find no significant dependence of the IRX-$beta$ trend on environment. However, we find that at a given $beta$, IRX is highly correlated with metallicity, and less correlated with mass, age, and sSFR. We conclude that, of the physical properties tested here, metallicity is the primary physical cause of the IRX-$beta$ scatter, and the IRX correlation with mass is presumably due to the mass dependence on metallicity. Our results indicate that the UV attenuation curve steepens with decreasing metallicity, and spans the full range of slope possibilities from a shallow Calzetti-type curve for galaxies with the highest metallicity in our sample (12+log(O/H)~8.6) to a steep SMC-like curve for those with 12+log(O/H)~8.3. Using a Calzetti (SMC) curve for the low (high) metallicity galaxies can lead to up to a factor of 3 overestimation (underestimation) of the UV attenuation and obscured SFR. We speculate that this change is due to different properties of dust grains present in the ISM of low- and high-metallicity galaxies.
182 - Brent Groves , 2011
High resolution spectra are necessary to distinguish and correctly measure the Balmer emission lines due to the presence of strong metal and Balmer absorption features in the stellar continuum. This accurate measurement is necessary for use in emissi on line diagnostics, such as the Balmer decrement (i.e. Halpha/Hbeta), used to determine the attenuation of galaxies. Yet at high redshifts obtaining such spectra becomes costly. Balmer emission line equivalent widths are much easier to measure, requiring only low resolution spectra or even simple narrow band filters and therefore shorter observation times. However a correction for the stellar continuum is still needed for this equivalent width Balmer decrement. We present here a statistical analysis of the Sloan Digital Sky Survey Data Release 7 emission line galaxy sample, using the spectrally determined Balmer emission line fluxes and equivalent widths. Using the large numbers of galaxies available in the SDSS catalogue, we determined an equivalent width Balmer decrement including a statistically-based correction for the stellar continuum. Based on this formula, the attenuation of galaxies can now be obtained from low spectral resolution observations. In addition, this investigation also revealed an error in the Hbeta line fluxes, within the SDSS DR7 MPA/JHU catalogue, with the equivalent widths underestimated by average ~0.35A in the emission line galaxy sample. This error means that Balmer decrement determined attenuations are overestimated by a systematic 0.1 magnitudes in A_V, and future analyses of this sample need to include this correction.
We present results on the dust attenuation curve of z~2 galaxies using early observations from the MOSFIRE Deep Evolution Field (MOSDEF) survey. Our sample consists of 224 star-forming galaxies with nebular spectroscopic redshifts in the range z= 1.3 6-2.59 and high S/N measurements of, or upper limits on, the H-alpha and H-beta emission lines obtained with Keck/MOSFIRE. We construct composite SEDs of galaxies in bins of specific SFR and Balmer optical depth in order to directly constrain the dust attenuation curve from the UV through near-IR for typical star-forming galaxies at high redshift. Our results imply an attenuation curve that is very similar to the SMC extinction curve at wavelengths redward of 2500 Angstroms. At shorter wavelengths, the shape of the curve is identical to that of the Calzetti relation, but with a lower normalization (R_V). Hence, the new attenuation curve results in SFRs that are ~20% lower, and log stellar masses that are 0.16 dex lower, than those obtained with the Calzetti attenuation curve. Moreover, we find that the difference in the reddening---and the total attenuation---of the ionized gas and stellar continuum correlates strongly with SFR, such that for dust-corrected SFRs larger than 20 Msun/yr assuming a Chabrier IMF, the nebular emission lines suffer an increasing degree of obscuration relative to the continuum. A simple model that can account for these trends is one in which the UV through optical stellar continuum is dominated by a population of less reddened stars, while the nebular line and bolometric luminosities become increasingly dominated by dustier stellar populations for galaxies with large SFRs, as a result of the increased dust enrichment that accompanies such galaxies. Consequently, UV- and SED-based SFRs may underestimate the total SFR at even modest levels of ~20 Msun/yr. [Abridged]
Do spatial distributions of dust grains in galaxies have typical forms, as do spatial distributions of stars? We investigate whether or not the distributions resemble uniform foreground screens, as commonly assumed by the high-redshift galaxy communi ty. We use rest-frame infrared, ultraviolet, and H$alpha$ line luminosities of dust-poor and dusty galaxies at z ~ 0 and z ~ 1 to compare measured H$alpha$ escape fractions with those predicted by the Calzetti attenuation formula. The predictions, based on UV escape fractions, overestimate the measured H$alpha$ escape fractions for all samples. The interpretation of this result for dust-poor z ~ 0 galaxies is that regions with ionizing stars have more dust than regions with nonionizing UV-emitting stars. Dust distributions for these galaxies are nonuniform. The interpretation of the overestimates for dusty galaxies at both redshifts is less clear. If the attenuation formula is inapplicable to these galaxies, perhaps the disagreements are unphysical; perhaps dust distributions in these galaxies are uniform. If the attenuation formula does apply, then dusty galaxies have nonuniform dust distributions; the distributions are more uniform than they are in dust-poor galaxies. A broad range of H$alpha$ escape fractions at a given UV escape fraction for z ~ 1 dusty galaxies, if real, indicates diverse dust morphologies and the implausibility of the screen assumption.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا