ﻻ يوجد ملخص باللغة العربية
The Huckel Hamiltonian is an incredibly simple tight-binding model famed for its ability to capture qualitative physics phenomena arising from electron interactions in molecules and materials. Part of its simplicity arises from using only two types of empirically fit physics-motivated parameters: the first describes the orbital energies on each atom and the second describes electronic interactions and bonding between atoms. By replacing these traditionally static parameters with dynamically predicted values, we vastly increase the accuracy of the extended Huckel model. The dynamic values are generated with a deep neural network, which is trained to reproduce orbital energies and densities derived from density functional theory. The resulting model retains interpretability while the deep neural network parameterization is smooth, accurate, and reproduces insightful features of the original static parameterization. Finally, we demonstrate that the Huckel model, and not the deep neural network, is responsible for capturing intricate orbital interactions in two molecular case studies. Overall, this work shows the promise of utilizing machine learning to formulate simple, accurate, and dynamically parameterized physics models.
Our work intends to show that: (1) Quantum Neural Networks (QNN) can be mapped onto spinnetworks, with the consequence that the level of analysis of their operation can be carried out on the side of Topological Quantum Field Theories (TQFT); (2) Deep
We introduce an all-optical Diffractive Deep Neural Network (D2NN) architecture that can learn to implement various functions after deep learning-based design of passive diffractive layers that work collectively. We experimentally demonstrated the su
In this work, we characterize the performance of a deep convolutional neural network designed to detect and quantify chemical elements in experimental X-ray photoelectron spectroscopy data. Given the lack of a reliable database in literature, in orde
In this work, we address the question whether a sufficiently deep quantum neural network can approximate a target function as accurate as possible. We start with simple but typical physical situations that the target functions are physical observable
We present a numerical modeling workflow based on machine learning (ML) which reproduces the the total energies produced by Kohn-Sham density functional theory (DFT) at finite electronic temperature to within chemical accuracy at negligible computati