ﻻ يوجد ملخص باللغة العربية
We report the discovery of a new ultra-short period transiting hot Jupiter from the Next Generation Transit Survey (NGTS). NGTS-10b has a mass and radius of $2.162,^{+0.092}_{-0.107}$ M$_{rm J}$ and $1.205,^{+0.117}_{-0.083}$ R$_{rm J}$ and orbits its host star with a period of $0.7668944pm0.0000003$ days, making it the shortest period hot Jupiter yet discovered. The host is a $10.4pm2.5$ Gyr old K5V star ($T_mathrm{eff}$=$4400pm100$,K) of Solar metallicity ([Fe/H] = $-0.02pm0.12$,dex) showing moderate signs of stellar activity. NGTS-10b joins a short list of ultra-short period Jupiters that are prime candidates for the study of star-planet tidal interactions. NGTS-10b orbits its host at just $1.46pm0.18$ Roche radii, and we calculate a median remaining inspiral time of $38$,Myr and a potentially measurable transit time shift of $7$,seconds over the coming decade, assuming a stellar tidal quality factor $Q_{rm s}=2times10^{7}$.
We report the discovery of a new ultra-short period hot Jupiter from the Next Generation Transit Survey. NGTS-6b orbits its star with a period of 21.17~h, and has a mass and radius of $1.330^{+0.024}_{-0.028}$mjup, and $1.271^{+0.197}_{-0.188}$rjup,
We present the discovery of NGTS-1b, a hot-Jupiter transiting an early M-dwarf host ($T_{eff}=3916^{+71}_{-63}~K$) in a P=2.674d orbit discovered as part of the Next Generation Transit Survey (NGTS). The planet has a mass of $0.812^{+0.066}_{-0.075}~
We report the discovery of NGTS-2b, an inflated hot-Jupiter transiting a bright F5V star (2MASS J14202949-3112074; $T_{rm eff}$=$6478^{+94}_{-89}$ K), discovered as part of the Next Generation Transit Survey (NGTS). The planet is in a P=4.51 day orbi
We introduce a model for the orbital period modulation in systems with close-by giant planets based on a spin-orbit coupling that transfers angular momentum from the orbit to the rotation of the planet and viceversa. The coupling is produced by a per
We present the discovery of NGTS-3Ab, a hot Jupiter found transiting the primary star of an unresolved binary system. We develop a joint analysis of multi-colour photometry, centroids, radial velocity (RV) cross-correlation function (CCF) profiles an