ﻻ يوجد ملخص باللغة العربية
In this paper, we consider the extensively studied problem of computing a $k$-sparse approximation to the $d$-dimensional Fourier transform of a length $n$ signal. Our algorithm uses $O(k log k log n)$ samples, is dimension-free, operates for any universe size, and achieves the strongest $ell_infty/ell_2$ guarantee, while running in a time comparable to the Fast Fourier Transform. In contrast to previous algorithms which proceed either via the Restricted Isometry Property or via filter functions, our approach offers a fresh perspective to the sparse Fourier Transform problem.
The Discrete Fourier Transform (DFT) is a fundamental computational primitive, and the fastest known algorithm for computing the DFT is the FFT (Fast Fourier Transform) algorithm. One remarkable feature of FFT is the fact that its runtime depends onl
In this paper we revisit the deterministic version of the Sparse Fourier Transform problem, which asks to read only a few entries of $x in mathbb{C}^n$ and design a recovery algorithm such that the output of the algorithm approximates $hat x$, the Di
In this paper, we theoretically propose a new hashing scheme to establish the sparse Fourier transform in high-dimensional space. The estimation of the algorithm complexity shows that this sparse Fourier transform can overcome the curse of dimensiona
Computing the dominant Fourier coefficients of a vector is a common task in many fields, such as signal processing, learning theory, and computational complexity. In the Sparse Fast Fourier Transform (Sparse FFT) problem, one is given oracle access t
In this paper, we study the tradeoff between the approximation guarantee and adaptivity for the problem of maximizing a monotone submodular function subject to a cardinality constraint. The adaptivity of an algorithm is the number of sequential round