ﻻ يوجد ملخص باللغة العربية
Let $k$ be an algebraically closed field of characteristic $0$ or $p>2$. Let $mathcal{G}$ be an affine supergroup scheme over $k$. We classify the indecomposable exact module categories over the tensor category ${rm sCoh}_{rm f}(mathcal{G})$ of (coherent sheaves of) finite dimensional $mathcal{O}(mathcal{G})$-supermodules in terms of $(mathcal{H},Psi)$-equivariant coherent sheaves on $mathcal{G}$. We deduce from it the classification of indecomposable {em geometrical} module categories over $sRep(mathcal{G})$. When $mathcal{G}$ is finite, this yields the classification of {em all} indecomposable exact module categories over the finite tensor category $sRep(mathcal{G})$. In particular, we obtain a classification of twists for the supergroup algebra $kmathcal{G}$ of a finite supergroup scheme $mathcal{G}$, and then combine it with cite[Corollary 4.1]{EG3} to classify finite dimensional triangular Hopf algebras with the Chevalley property over $k$.
We study monoidal categorifications of certain monoidal subcategories $mathcal{C}_J$ of finite-dimensional modules over quantum affine algebras, whose cluster algebra structures coincide and arise from the category of finite-dimensional modules over
Let $U_q(mathfrak{g})$ be a quantum affine algebra of untwisted affine $ADE$ type, and $mathcal{C}_{mathfrak{g}}^0$ the Hernandez-Leclerc category of finite-dimensional $U_q(mathfrak{g})$-modules. For a suitable infinite sequence $widehat{w}_0= cdots
We give a necessary and sufficient condition in terms of group cohomology for two indecomposable module categories over a group-theoretical fusion category ${mathcal C}$ to be equivalent. This concludes the classification of such module categories.
We generalize the definition of an exact sequence of tensor categories due to Brugui`eres and Natale, and introduce a new notion of an exact sequence of (finite) tensor categories with respect to a module category. We give three definitions of this n
Let $Vsubseteq A$ be a conformal inclusion of vertex operator algebras and let $mathcal{C}$ be a category of grading-restricted generalized $V$-modules that admits the vertex algebraic braided tensor category structure of Huang-Lepowsky-Zhang. We giv