ﻻ يوجد ملخص باللغة العربية
Since decades, the data science community tries to propose prediction models of financial time series. Yet, driven by the rapid development of information technology and machine intelligence, the velocity of todays information leads to high market efficiency. Sound financial theories demonstrate that in an efficient marketplace all information available today, including expectations on future events, are represented in today prices whereas future price trend is driven by the uncertainty. This jeopardizes the efforts put in designing prediction models. To deal with the unpredictability of financial systems, todays portfolio management is largely based on the Markowitz framework which puts more emphasis in the analysis of the market uncertainty and less in the price prediction. The limitation of the Markowitz framework stands in taking very strong ideal assumptions about future returns probability distribution. To address this situation we propose PAGAN, a pioneering methodology based on deep generative models. The goal is modeling the market uncertainty that ultimately is the main factor driving future trends. The generative model learns the joint probability distribution of price trends for a set of financial assets to match the probability distribution of the real market. Once the model is trained, a portfolio is optimized by deciding the best diversification to minimize the risk and maximize the expected returns observed over the execution of several simulations. Applying the model for analyzing possible futures, is as simple as executing a Monte Carlo simulation, a technique very familiar to finance experts. The experimental results on different portfolios representing different geopolitical areas and industrial segments constructed using real-world public data sets demonstrate promising results.
In mathematical finance and other applications of stochastic processes, it is frequently the case that the characteristic function may be known but explicit forms for density functions are not available. The simulation of any distribution is greatly
We revisit and demonstrate the Epps effect using two well-known non-parametric covariance estimators; the Malliavin and Mancino (MM), and Hayashi and Yoshida (HY) estimators. We show the existence of the Epps effect in the top 10 stocks from the Joha
This paper studies the extreme dependencies between energy, agriculture and metal commodity markets, with a focus on local co-movements, allowing the identification of asymmetries and changing trend in the degree of co-movements. More precisely, star
Optimal portfolio selection problems are determined by the (unknown) parameters of the data generating process. If an investor want to realise the position suggested by the optimal portfolios he/she needs to estimate the unknown parameters and to acc
We propose a fully data-driven approach to calibrate local stochastic volatility (LSV) models, circumventing in particular the ad hoc interpolation of the volatility surface. To achieve this, we parametrize the leverage function by a family of feed-f