ﻻ يوجد ملخص باللغة العربية
Direct imaging of exo-Earths and search for life is one of the most exciting and challenging objectives for future space observatories. Segmented apertures in space will be required to reach the needed large diameters beyond the capabilities of current or planned launch vehicles. These apertures present additional challenges for high-contrast coronagraphy, not only in terms of static phasing but also in terms of their stability. The Pair-based Analytical model for Segmented Telescope Imaging from Space (PASTIS) was developed to model the effects of segment-level optical aberrations on the final image contrast. In this paper, we extend the original PASTIS propagation model from a purely analytical to a semi-analytical method, in which we substitute the use of analytical images with numerically simulated images. The inversion of this model yields a set of orthonormal modes that can be used to determine segment-level wavefront tolerances. We present results in the case of segment-level piston error applied to the baseline coronagraph design of LUVOIR A, with minimum and maximum wavefront error constraint between 56 pm and 290 pm per segment. The analysis is readily generalizable to other segment-level aberrations modes, and can also be expanded to establish stability tolerances for these missions.
This paper introduces an analytical method to calculate segment-level wavefront error tolerances in order to enable the detection of faint extra-solar planets using segmented telescopes in space. This study provides a full treatment of spatially unco
The detection of Earth-like exoplanets in the habitable zone of their stars, and their spectroscopic characterization in a search for biosignatures, requires starlight suppression that exceeds the current best ground-based performance by orders of ma
Due to the limited number of photons, directly imaging planets requires long integration times with a coronagraphic instrument. The wavefront must be stable on the same time scale, which is often difficult in space due to thermal variations and other
An outstanding, multi-disciplinary goal of modern science is the study of the diversity of potentially Earth-like planets and the search for life in them. This goal requires a bold new generation of space telescopes, but even the most ambitious desig
Direct imaging of Earth-like planets from space requires dedicated observatories, combining large segmented apertures with instruments and techniques such as coronagraphs, wavefront sensors, and wavefront control in order to reach the high contrast o