ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining level densities through quantitative correlations with cross-section data

200   0   0.0 ( 0 )
 نشر من قبل Gustavo Nobre
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The adopted level densities (LD) for the nuclei produced through different reaction mechanisms significantly impact the calculation of cross sections for the many reaction channels. Common LD models make simplified assumptions regarding the overall behavior of the total LD and the intrinsic spin and parity distributions of the excited states. However, very few experimental constraints are taken into account: LD at neutron separation energy coming from average resonance spacings, whenever they have been previously measured, and the sometimes subjective extrapolation of discrete levels. These, however, constrain the LD only for very specific spins, parities and excitation energies. This work aims to establish additional experimental constraints on LD through quantitative correlations between cross sections and LD. This allows for the fitting and determination of detailed structures in LD. For this we use the microscopic Hartree-Fock-Bogoliubov (HFB) LD to associate variations predicted by the model with the structure observed in double-differential spectra at low outgoing neutron energy, which is dominated by the LD input. We also use uc{56}{Fe} ($n,p$) as an example cross sections are extremely sensitive to LD. For comparison purposes we also perform calculations with the GC model. With this approach we are able to perform fits of the LD based on actual experimental data, constraining the model and ensuring its consistency. This approach can be particularly useful in extrapolating the LD to nuclei for which high-excited discrete levels and/or resonance spacings are unknown. It also predicts inelastic gamma cross sections that can significantly differ from more standard phenomenological LD.



قيم البحث

اقرأ أيضاً

Several models of level densities exist and they often make simplified assumptions regarding the overall behavior of the total level densities (LD) and the intrinsic spin and parity distributions of the excited states. Normally, such LD models are co nstrained only by the measured $D_0$, i.e. the density of levels at the neutron separation energy of the compound nucleus (target plus neutron), and the sometimes subjective extrapolation of discrete levels. In this work we use microscopic Hartree-Fock-Bogoliubov (HFB) level densities, which intrinsically provide more realistic spin and parity distributions, and associate variations predicted by the HFB model with the observed double-differential cross sections at low outgoing neutron energy, region that is dominated by the LD input. With this approach we are able to perform fits of the LD based on actual experimental data, constraining the model and ensuring its consistency. This approach can be particularly useful in extrapolating the LD to nuclei for which high-excited discrete levels and/or values of $D_0$ are unknown. It also predicts inelastic gamma (n,n$^{prime}gamma$) cross sections that in some cases can differ significantly from more standard LD models such as Gilbert-Cameron.
89 - M. Posik 2019
Over the past several years, parton distribution functions (PDFs) have become more precise. However there are still kinematic regions where more data are needed to help constrain global PDF extractions, such as the ratio of the sea quark distribution s $bar{d}$/$bar{u}$ near the valence region. Furthermore, current measurements appear to suggest different high-$x$ behaviors of this ratio. The $W$ cross section ratio ($W^+$/$W^-$) is sensitive to the unpolarized quark distributions at large $Q^2$ set by the $W$ mass. Such a measurement can be used to help constrain the $bar{d}$/$bar{u}$ ratio. The STAR experiment at RHIC is well equipped to measure the leptonic decays of $W$ bosons, in the mid-pseudorapdity range $left(|eta| leq 1 right)$, produced in proton-proton collisions at $sqrt{s}$ = 500/510 GeV. At these kinematics STAR is sensitive to quark distributions near $x$ of 0.16. STAR can also measure $W^+$/$W^-$ in a more forward region ranging from 1.0 $< eta <$1.5, which extends the sea quark sensitivity to higher $x$. RHIC runs from 2011 through 2013 have collected about 350 pb$^{-1}$ of integrated luminosity, and an additional 350 pb$^{-1}$ from the 2017 run. These proceedings will present preliminary results of the 2011-2013 $W^+$/$W^-$ cross section ratio measurements. Additionally, the $W/Z$ cross section ratio, differential and total $W$ and $Z$ cross sections are presented.
87 - M. Posik 2017
Over the past several years, parton distribution functions (PDFs) have become more precise. However there are still kinematic regions where more data are needed to help constrain global PDF extractions, such as the sea quark distributions $bar{d}$/$b ar{u}$ near the valence region (Bjorken-x $approx$ 0.1 - 0.3).~Current measurements appear to suggest different high-x behaviors of these distributions, leading to large uncertainties in global fits. The charged W cross section ratio (W$^+$/W$^-$) is sensitive to the unpolarized $u,;d,;bar{u},$ and $bar{d}$ quark distributions at large $Q^2$ set by the $W$ mass and could help shed light on this discrepancy. The STAR experiment at RHIC is well equipped to measure the leptonic decays of W bosons, in the mid-rapidity range $left(|eta| leq 1 right)$, produced in proton+proton collisions at $sqrt{s}$ = 500/510 GeV. At these kinematics STAR is sensitive to quark distributions near Bjorken-x of 0.16. STAR can also measure the W cross section ratio in a more forward bin ranging from 1.1 $< eta <$ 2.0, which extends the sea quark sensitivity to higher x. RHIC runs from 2011 through 2013 have collected about 350 pb$^{-1}$ of integrated luminosity, and a 2017 run is expected to provide an additional 400 pb$^{-1}$. Presented here are preliminary results for the 2011-2012 charged W cross section ratios ($sim$100pb$^{-1}$) and an update on the 2013 charged W cross section analysis ($sim$250 pb$^{-1}$).
The total neutron-Nucleus cross section has been calculated within an approach which takes into account nucleon-nucleon correlations, Glauber multiple scattering and inelastic shadowing corrections. Nuclear targets ranging from 4He to 208Pb and neutr on incident momentum ranging from 3 to 300 GeV/c, have been considered. Correlations have been introduced by two different approaches leading to the same results. The commonly used approximation, consisting in treating nuclear effects only by a product of one-body densities, is carefully analyzed and it is shown that the effects of realistic correlations resulting from modern nucleon-nucleon interactions and realistic correlations resulting from realistic nucleon-nucleon interactions and microscopic ground state calculation of nuclear properties cannot be disregarded.
319 - R.B. Firestone 2021
Photon strength, $f(E_{gamma})$, measured in photonuclear reactions, is the product of the average level density per MeV, $rho(E_x)$, and the average reduced level width, $Gamma_{gamma}/E_{gamma}^3$ for levels populated primarily by E1 transitions at an excitation energy $E_x=E_{gamma}$. It can be calculated with the Brink-Axel (BA) formulation modified to include contributions from the Giant Dipole Resonance (GDR) and higher lying resonances. Level densities and reduced widths have been calculated for 17 nuclei with atomic numbers between Z=14-92. Level densities below the GDR energy were calculated with the CT-JPI model and combined with the BA photon strength to determine the associated reduced widths. The reduced widths varied exponentially with level energy and could be extrapolated up to higher energies. The extrapolated widths were then combined with the BA photon strength to determine the level densities at higher energies. The level densities are found to increase exponentially at low energies, peak near the GDR energy due to the appearance of new states at the $2hbaromega$ shell closure, and continue to increase less rapidly up to at least 30 MeV. The average level densities have been compared with the Fermi Gas Level Density (FGLD), Back-Shifted Fermi Gas (BSFG), and Hartree-Fock-Bogoliubov (HFB) models. Good agreement is found with the nearly identical FGLD and BDFG models, while the HFB models gives substantially lower level densities. A universal set of FGLD model parameters were determined as a function of mass and temperature that are applicable to all nuclei.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا