ﻻ يوجد ملخص باللغة العربية
Massive Dirac fermions break the chiral symmetry explicitly and also make the Berry curvature of the band structure non-Abelian. By utilizing the Greens function technique, we develop a microscopic theory to establish a set of quantum diffusive equations for massive Dirac materials in the presence of electric and magnetic fields. It is found that the longitudinal magnetoresistance is always negative and quadratic in the magnetic field, and decays quickly with the mass. The theory is applicable to the systems with non-Abelian Berry curvature and resolves the puzzles of anomalous magnetotransport properties measured in topological materials.
Helical symmetry of massive Dirac fermions is broken explicitly in the presence of electric and magnetic fields. Here we present two equations for the divergence of helical and axial-vector currents following the Jackiw-Johnson approach to the anomal
Magnetoresistance in many samples of Dirac semimetal and topological insulator displays non-monotonic behaviors over a wide range of magnetic field. Here a formula of magnetoconductivity is presented for massless and massive Dirac fermions in Dirac m
Graphitic nitrogen-doped graphene is an excellent platform to study scattering processes of massless Dirac fermions by charged impurities, in which high mobility can be preserved due to the absence of lattice defects through direct substitution of ca
Two-dimensional (2D) massive Dirac electrons possess a finite Berry curvature, with Chern number $pm 1/2$, that entails both a quantized dc Hall response and a subgap full-quarter Kerr rotation. The observation of these effects in 2D massive Dirac ma
Symmetry breaking is a characteristic to determine which branch of a bifurcation system follows upon crossing a critical point. Specifically, in spin-orbit torque (SOT) devices, a fundamental question arises: how to break the symmetry of the perpendi