ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic Bandwidth Allocation in Small-Cell Networks: An Economics Approach

79   0   0.0 ( 0 )
 نشر من قبل Bernardo Huberman
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose and experimentally demonstrate a bandwidth allocation method based on the comparative advantage of spectral efficiency among users in a multi-tone small-cell radio access system with frequency-selective fading channels. The method allocates frequency resources by ranking the comparative advantage of the spectrum measured at the receivers ends. It improves the overall spectral efficiency of the access system with low implementation complexity and independently of power loading. In a two-user wireless transmission experiment, we observe up to 23.1% average capacity improvement by using the proposed method.



قيم البحث

اقرأ أيضاً

In this paper, for the first time, we analytically prove that the uplink (UL) inter-cell interference in frequency division multiple access (FDMA) small cell networks (SCNs) can be well approximated by a lognormal distribution under a certain conditi on. The lognormal approximation is vital because it allows tractable network performance analysis with closed-form expressions. The derived condition, under which the lognormal approximation applies, does not pose particular requirements on the shapes/sizes of user equipment (UE) distribution areas as in previous works. Instead, our results show that if a path loss related random variable (RV) associated with the UE distribution area, has a low ratio of the 3rd absolute moment to the variance, the lognormal approximation will hold. Analytical and simulation results show that the derived condition can be readily satisfied in future dense/ultra-dense SCNs, indicating that our conclusions are very useful for network performance analysis of the 5th generation (5G) systems with more general cell deployment beyond the widely used Poisson deployment.
Heterogeneous wireless networks with small-cell deployments in licensed and unlicensed spectrum bands are a promising approach for expanding wireless connectivity and service. As a result, wireless service providers (SPs) are adding small-cells to au gment their existing macro-cell deployments. This added flexibility complicates network management, in particular, service pricing and spectrum allocations across macro- and small-cells. Further, these decisions depend on the degree of competition among SPs. Restrictions on shared spectrum access imposed by regulators, such as low power constraints that lead to small-cell deployments, along with the investment cost needed to add small cells to an existing network, also impact strategic decisions and market efficiency. If the revenue generated by small-cells does not cover the investment cost, then there will be no deployment even if it increases social welfare. We study the implications of such spectrum constraints and investment costs on resource allocation and pricing decisions by competitive SPs, along with the associated social welfare. Our results show that while the optimal resource allocation taking constraints and investment into account can be uniquely determined, adding those features with strategic SPs can have a substantial effect on the equilibrium market structure.
In this paper, we analytically derive an upper bound on the error in approximating the uplink (UL) single-cell interference by a lognormal distribution in frequency division multiple access (FDMA) small cell networks (SCNs). Such an upper bound is me asured by the Kolmogorov Smirnov (KS) distance between the actual cumulative density function (CDF) and the approximate CDF. The lognormal approximation is important because it allows tractable network performance analysis. Our results are more general than the existing works in the sense that we do not pose any requirement on (i) the shape and/or size of cell coverage areas, (ii) the uniformity of user equipment (UE) distribution, and (iii) the type of multi-path fading. Based on our results, we propose a new framework to directly and analytically investigate a complex network with practical deployment of multiple BSs placed at irregular locations, using a power lognormal approximation of the aggregate UL interference. The proposed network performance analysis is particularly useful for the 5th generation (5G) systems with general cell deployment and UE distribution.
Aerial base station (ABS) is a promising solution for public safety as it can be deployed in coexistence with cellular networks to form a temporary communication network. However, the interference from the primary cellular network may severely degrad e the performance of an ABS network. With this consideration, an adaptive dynamic interference avoidance scheme is proposed in this work for ABSs coexisting with a primary network. In the proposed scheme, the mobile ABSs can reconfigure their locations to mitigate the interference from the primary network, so as to better relay the data from the designated source(s) to destination(s). To this end, the single/multi-commodity maximum flow problems are formulated and the weighted Cheeger constant is adopted as a criterion to improve the maximum flow of the ABS network. In addition, a distributed algorithm is proposed to compute the optimal ABS moving directions. Moreover, the trade-off between the maximum flow and the shortest path trajectories is investigated and an energy-efficient approach is developed as well. Simulation results show that the proposed approach is effective in improving the maximum network flow and the energy-efficient approach can save up to 39% of the energy for the ABSs with marginal degradation in the maximum network flow.
A novel intelligent bandwidth allocation scheme in NG-EPON using reinforcement learning is proposed and demonstrated for latency management. We verify the capability of the proposed scheme under both fixed and dynamic traffic loads scenarios to achie ve <1ms average latency. The RL agent demonstrates an efficient intelligent mechanism to manage the latency, which provides a promising IBA solution for the next-generation access network.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا